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Abstract

In this paper, we study containment properties of graphs in relation with the Cartesian product operation. These results can be
used to derive embedding results for interconnection networks for parallel architectures.

First, we show that the isomorphism of two Cartesian powers Gr and Hr implies the isomorphism of G and H, while Gr ⊆ Hr

does not imply G ⊆ H , even for the special cases when G and H are prime, and when they are connected and have the same number
of nodes at the same time.

Then, we find a simple sufficient condition under which the containment of products implies the containment of the factors: if∏n
i=1 Gi ⊆ ∏n

j=1 Hj , where all graphs Gi are connected and no graph Hj has 4-cycles, then each Gi is a subgraph of a different
graph Hj . Hence, if G is connected and H has no 4-cycles, then Gr ⊆ Hr implies G ⊆ H .

Finally, we focus on the particular case of products of graphs with the linear array. We show that the fact that G × Ln ⊆ H × Ln

does not imply that G ⊆ H even in the case when G and H are connected and have the same number of nodes. However, we find a
sufficient condition under which G × Ln ⊆ H × Ln implies G ⊆ H .
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The Cartesian product has been found a useful tool to build large graphs from small factor graphs. For instance,
there has been a number of interconnection networks proposed for parallel architectures that are, in fact, the Cartesian
product of factor networks (e.g., [1,3,9]). Part of the interest of this class of networks is that many of their properties
can be derived from the properties of the factor networks [2,11].

A very important property of an interconnection network is its capability of emulating other networks via embeddings.
It is well known that the embedding properties of the factor networks propagate to the product network [6,p. 401,11].
For instance, if G can be efficiently embedded into H, then Gr (the r th Cartesian power of G) can be embedded into
Hr with the same efficiency. However, to our knowledge, it is not known whether embedding properties of the product
network imply similar embedding properties for the factor networks.

In this work, we start looking at this open question by considering containment between graphs, which is the simplest
kind of embedding. Hence, the question we try to answer here is the following: “given that one product graph is a
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subgraph of another product graph, what can we say about their respective factor graphs?” In the particular case of
product interconnection networks, answers to this question would allow to know whether two networks can be subgraph
one of the other (and hence efficiently emulate one with the other) by only looking at their respective factor graphs.

1.1. Our results

We first look at power graphs, and show that, if Gr and Hr are isomorphic, then G and H are also isomorphic. This
result could drive to conjecture that, if Gr is a subgraph of Hr , then G must be a subgraph of H. However, we disprove
this conjecture by presenting counterexamples, even for the special cases when G and H are prime, and when they are
connected and have the same number of nodes.

We then present a sufficient condition under which the containment of product graphs implies the containment of the
factor graphs. We show that, if the product of n connected graphs G1, . . . , Gn is a subgraph of the product of n graphs
H1, . . . , Hn without 4-cycles, then each graph Gi is a subgraph of a different graph Hj . As a consequence, applying
this result to power graphs, if G is connected and H has no 4-cycles, then Gr ⊆ Hr implies G ⊆ H . Since a number of
graphs used as factors to construct interconnection networks have no 4-cycles (except in specific instances), e.g., the
linear array, the ring, any tree, the cube-connected cycles, the mesh of trees [6], or the Petersen graph [9], these results
can be directly applied to products and powers of these graphs.

Finally, we focus on the study of products with the linear array. We find a sufficient condition under which the product
of one graph G with the linear array Ln being a subgraph of the product of another graph H with the same linear array
Ln implies G ⊆ H . However, G × Ln ⊆ H × Ln does not imply G ⊆ H in general, since we find a counterexample
even for the special case when G and H are connected and have the same number of nodes.

2. Definitions

All the graphs considered in this paper are finite undirected graphs without loops. We usually denote a graph by a
capital letter, e.g., G. The set of vertices of a graph G is denoted as VG and the set of edges as EG. For simplicity, we
denote the number of nodes of a graph G by |G|.

Although for convenience we make extensive use of labeled graphs, when comparing for containment or equality
we consider all the graphs unlabeled, and therefore, we identify isomorphic graphs.

We start by formally defining the Cartesian product of two graphs.

Definition 1. The Cartesian product of two factor graphs G=(VG, EG) and H =(VH , EH ) is the graph G×H whose
vertex set is VG × VH and whose edge set contains all the edges (uv, u′v′) such that {u, u′} ⊆ VG, {v, v′} ⊆ VH , and
either u = u′ and (v, v′) ∈ EH , or v = v′ and (u, u′) ∈ EG.

In the following sections, we will frequently abbreviate the Cartesian product of two graphs G and H (G × H) as
GH. This definition is extended to the product of more than two graphs in the obvious way. From Definition 1 it is easy
to see that the Cartesian product operation is commutative (since we identify isomorphic graphs) and associative.

It can be observed that, given a fixed node v ∈ VH , all the nodes uv ∈ VG×H and the edges connecting them form a
subgraph of G × H isomorphic to G. Clearly, there are |H | disjoint such subgraphs, each uniquely identified by one
node v of H. We say, then, that G × H contains |H | disjoint copies of G and we denote the copy identified with the
node v ∈ VH as Gv. The set of all the edges in the copies of G is denoted as the G-edges or the G-dimension. Similarly,
G × H contains |G| disjoint copies of H. We use a similar notation to identify each of them and to refer to the H-edges
and H-dimension.

Now, we define the direct sum (also known as union of two graphs).

Definition 2. The direct sum of two component graphs G = (VG, EG) and H = (VH , EH ) is the graph G + H whose
vertex set and edge set are the disjoint unions, respectively, of the vertex sets and edge sets of G and H.

If G has m connected components and H has n connected components, then G + H will have m + n connected
components: m isomorphic to those of G and n isomorphic to those of H.
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It is easy to see that the direct sum is commutative and associative. Furthermore, the Cartesian product is distributive
with respect to the direct sum. In order to abbreviate expressions we will denote the graph with n components, all of
them isomorphic to G, as nG.

We will also define some special classes of graphs that will be used in the rest of the paper.

Definition 3. The trivial graph is the graph T = (VT , ET ) such that VT has exactly one vertex and ET is the empty
set.

Definition 4. The null graph is the graph N = (VN, EN) such that VN and EN are the empty set.

Clearly, G + N = G, G × N = N and G × T = G for any graph G.

Definition 5. The n-node linear array, denoted Ln, is the graph with vertex set {0, 1, . . . , n−1} and edge set {(i, i+1) :
i ∈ {0, . . . , n − 2}}.

Definition 6. The n-node ring, denoted Rn, is the graph with vertex set {0, 1, . . . , n−1} and edge set {(i, (i+1) mod n) :
i ∈ {0, . . . , n − 1}}.

Definition 7 (Leighton [6], p. 21). The bisection width of a graph is the minimum number of edges which must be
removed in order to split the graph into two disconnected subgraphs of equal (within one) number of nodes.

We denote as B(G, a) the minimum number of edges that have to be removed from a graph G to disconnect it into
two subgraphs G1 and G2 such that ||G1| − |G2||�a. Clearly, B(G, a) is never larger than the bisection width of G.

Finally, we define the maximal congestion, a property of connected graphs. To do so, we first introduce the concept
of embedding of graphs. An embedding of a guest graph into a host graph is a one-to-one mapping of the vertices of
the guest into the vertices of the host and a mapping of the edges of the guest into paths of the host connecting the
corresponding vertices. The congestion of an embedding is the maximum number of such paths that traverse any edge
of the host.

Definition 8. The maximal congestion of a connected graph G, denoted as C(G), is the minimum congestion of an
embedding of the |G|-node directed complete graph (i.e., one in which each pair of nodes is connected by two arcs
with opposite orientations) onto G.

3. Containment of power graphs

This section is devoted to study containment results among power graphs. First, we show that if two power graphs
with the same number of dimensions are isomorphic, then their respective factor graphs must be isomorphic as well. We
continue by showing that this does not hold for containment, i.e., the fact of a power graph being a subgraph of another
power graph with the same number of dimensions does not imply that their respective factor graphs are contained one
in the other.

Sabidussi has shown in [10] that a connected graph has a unique factorization into a multi-set of Cartesian-prime
graphs. From this property, it is easy to see that if G and H are two connected graphs, Gr =Hr implies G=H . However,
this may be not so straightforward for disconnected graphs since they do not have a unique factorization, as it is shown
below.

Certificates (canonical forms) of graphs have been widely used for graph isomorphism testing. A certificate is a
numeric value such that two graphs have the same certificate if and only if they are isomorphic. The technique used for
isomorphism testing first computes the certificates of the graphs to be tested, and then compares these certificates for
equality. For more information on computing certificates, see, for example, [4, Chapter 7]. Then, we can use certificates
to totally order all non-trivial connected Cartesian-prime graphs, and use this ordering to enumerate all these graphs
as F1, F2, . . . .

Let X = {x1, x2, . . .} be a denumerable set of (commutative) variables, and let R= Z[X] be the integral polynomial
ring in these variables. We can define a correspondence between Fi and xi , i�1. Let the trivial graph T correspond to
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the trivial monomial 1 ∈ R and the null graph N to 0 ∈ R. Then, each graph corresponds to a polynomial in R with
non-negative coefficients, and vice-versa. We denote by P(G) the polynomial associated to a graph G, and P −1(p)

the graph associated to a polynomial p in R with non-negative coefficients. Note that the Cartesian product of graphs
corresponds to the multiplication in R and the direct sum of graphs to the polynomial sum. Clearly, for graphs G and
H we have that P(G × H) = P(G)P (H) and P(G + H) = P(G) + P(H).

We first observe that, unlikeR, the set of polynomials with non-negative coefficients inR is not a unique factorization
domain, as shown by Nakayama and Hashimoto [7]. See, for instance, the following simple example due to Nüsken
[8]. The polynomial p(x1) = x4

1 + 2x3
1 + x2

1 + 4x1 + 4 on x1 ∈ X is a polynomial in R with non-negative coefficients.
Note that the unique factorization of p(x1) in R yields x4

1 + 2x3
1 + x2

1 + 4x1 + 4 = (x1 + 1)(x2
1 − x1 + 2)(x1 + 2),

which has a factor with a negative coefficient. Without negative coefficients we obtain two different factorizations
(x3

1 + x1 + 2)(x1 + 2) = (x1 + 1)(x3
1 + x2

1 + 4). From this fact, it follows that the graph P −1(p(x1)) has two different
prime factorizations.

Theorem 1. Gr = Hr implies G = H .

Proof. Let S be the multi-set of prime polynomials obtained from the unique factorization of P(G) in R. Note that not
all the polynomials in S must have non-negative coefficients, and hence correspond to a graph. Since P(Gr)=(P (G))r ,
the multi-set U = ⋃r

i=1 S satisfies that
∏

u∈U u = P(Gr). Furthermore, U is a factorization of P(Gr) in R, since all
polynomials in U are prime. Finally, U is the unique factorization of P(Gr) in R, since R is a unique factorization
domain.

Similarly, let T be the multi-set of prime polynomials obtained from the unique factorization of P(H) in R. Then,⋃r
i=1 T is the unique factorization of P(Hr) in R. Since P(Gr) = P(Hr), we must have that U = ⋃r

i=1 S = ⋃r
i=1 T ,

and hence S = T . Therefore, P(G) = P(H) and G = H . �

This theorem could lead us to conjecture that a similar result holds when Gr and Hr are not isomorphic, but subgraphs
one of the other. The following theorem disproves this conjecture.

Theorem 2. Gr ⊆ Hr does not imply G ⊆ H .

Proof. To prove the theorem we find two graphs G and H such that G is not a subgraph of H but G2 is a subgraph of
H 2. Let us consider the graphs K, I, and J, presented in Fig. 1:

K = L4 × R3, I = R2
3, J = L2

4.

Clearly, K is not a subgraph of J, since J does not contain R3 as a subgraph. Similarly, K is not a subgraph of I since K
has 12 nodes while I only has 9.

However, observe that K2 =L2
4 ×R2

3 = J × I . Then, if we define G=K and H = J + I , we have two graphs G and
H such that G2 is contained in H 2 but G is not a subgraph of H. It is easy to see that G2=IJ⊆I 2+2IJ+J 2=H 2. �

Note that the counterexample we just presented uses product and disconnected graphs. Hence, it does not cover
the case when G and H are both prime or when they are connected. Counterexamples for these special cases can be
obtained by slightly modifying the one above.

JIK

Fig. 1. Graphs K, I, and J.
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Corollary 1. Let G and H be connected graphs, even then Gr ⊆ Hr does not imply G ⊆ H .

Proof. Let K, J, I, and G be as defined in the previous proof. Note that G is already connected. We can construct a
connected graph H by connecting J to I using just one edge (any will do).

G is not a subgraph of the graph H constructed, since it is neither a subgraph of J nor I, and the minimum
cut in G contains three edges. However, G2 is a subgraph of H 2 since this H is a super-graph of the H in the previous
proof. �

Corollary 2. Let G and H be connected prime graphs, even then Gr ⊆ Hr does not imply G ⊆ H .

Proof. The graph G in the previous proof can be made prime by deleting any edge from it. The graph H from the
previous proof is already prime because it has a bridge. �

The counterexamples just presented do not cover a large special class of graphs: graphs with the same number of
nodes. A counterexample for this special case can be again obtained by adapting the previous ones.

Corollary 3. Let |G| = |H |, even then Gr ⊆ Hr does not imply G ⊆ H .

Proof. Let K, J, and I be as defined in the proof of Theorem 2. We will construct two graphs G and H with the same
number of nodes such that G is not a subgraph of H but G2 is contained in H 2.

We first make H = 2I + J . Trivially, H has exactly 34 nodes. Then, we make G = K + 22T (one copy of K and
exactly 22 isolated nodes). Clearly, G and H have the same number of nodes and G is not contained in H. Clearly,
G2 = K2 + 44K + 222T and H 2 = 4I 2 + 4IJ + J 2. Since K2 = IJ , then 12K ⊆ IJ (remember that from the
construction of the Cartesian product, K2 has |K| = 12 disjoint copies of K ). Additionally, 6K ⊆ I 2 as shown in
Fig. 2. Therefore, K2 ⊆ IJ , 36K ⊆ 3IJ and 8K ⊆ 2I 2. This makes K2 + 44K ⊆ 4IJ + 2I 2. Finally, the 222

isolated nodes in G2 can then be mapped to the rest of the nodes in H 2. This shows that G2 is a subgraph of H 2 and
completes the proof. �

Finally, trying to restrict even more the class of graphs in order to find a positive result, we choose the class of
connected graphs with the same number of nodes. However, even for this very restrictive case we have found a
counterexample, shown in the next theorem.

Theorem 3. Let G and H be connected graphs such that |G| = |H |, even then Gr ⊆ Hr does not imply G ⊆ H .

I2

Fig. 2. Graph I2 contains six disjoint copies of K. For the sake of clarity, some edges have been removed from all but the top row and all but the
leftmost column.
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HG

12 13 14 15

8 9 10 11

4 5 6 7

3210

1312 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Fig. 3. Graphs G and H of Theorem 3.

Proof. Let us consider the graphs G and H as shown in Fig. 3. By exhaustive search and with the aid of a computer pro-
gram we have found that while G�H , G2 ⊆ H 2. The mapping of the vertices of G2 into the vertices of H 2 is presented in
theAppendix. The input files with graphs G and H, along with the programs that have been used to compute their respec-
tive squares, to find the mapping, and to verify it are available at URL http://www.diatel.upm.es/jllopez/containment.

�

4. Containment of products of graphs

In this section, we give a sufficient condition for a collection of factor graphs G1, . . . , Gn to be pairwise subgraph
of another collection H1, . . . , Hn when their respective products are. To simplify the notation, we use G to denote∏n

i=1 Gi and H to denote
∏n

i=1 Hi , respectively. In most of the results presented we assume that G ⊆ H under some
mapping. We will useG⊆MH to explicitly expose the mapping M that satisfies the containment property, when needed.

In order to prove the main result of this section, we need some lemmas.

Lemma 1. Let G1, . . . , Gn be a collection of n connected graphs and let H1, . . . , Hn be another collection of n graphs.
If G⊆MH, then all the edges connecting any two adjacent copies of Gi , i ∈ {1, . . . , n}, in G are mapped under M to
the same dimension in H.

Proof. Let (ai, bi) denote an edge of the graph Gi , for any i ∈ {1, . . . , n}, and (uj , vj ) and (uj , wj ) denote ad-
jacent edges of the graph Hj , for any j ∈ {1, . . . , n}. Let us consider a 4-cycle in G formed by the G1-edges e =
(a1a2a3 . . . an, b1a2a3 . . . an) and e′=(a1b2a3 . . . an, b1b2a3 . . . an), and theG2-edges�=(a1a2a3 . . . an, a1b2a3 . . . an)

and �′ = (b1a2a3 . . . an, b1b2a3 . . . an).Without loss of generality, we assume that e is mapped to the H1-edge M(e) =
(u1u2u3 . . . un, v1u2u3 . . . un). By the way of contradiction, let us assume that � and �′ are mapped to edges in different
dimensions in H. We need to consider two cases.

Case 1: One of the G2-edges is mapped to an H1-edge and the other is mapped to some other dimension. W.l.o.g., we
can assume that � is mapped to the H1-edge M(�) = (u1u2u3 . . . un, w1u2u3 . . . un) and �′ is mapped to the H2-edge
M(�′)=(v1u2u3 . . . un, v1v2u3 . . . un). Then, e′ should be mapped to the edge M(e′)=(w1u2u3 . . . un, v1v2u3 . . . un),
which does not exist in H from the construction of the Cartesian product, and we reach a contradiction.

Case 2: Both G2-edges are mapped to dimensions different from H1. W.l.o.g., we can assume that � is mapped to the
H2-edge M(�)=(u1u2u3 . . . un, u1v2u3 . . . un) and �′ is mapped to the H3-edge M(�′)=(v1u2u3 . . . un, v1u2v3 . . . un).
Then, e′ should be mapped to the edge M(e′) = (u1v2u3 . . . un, v1u2v3 . . . un), which does not exist in H from the
construction of the Cartesian product, and we reach a contradiction.

Therefore, both edges � and �′ must be mapped to edges in the same dimension inH. Since all the graphs G1, . . . , Gn

are connected, the above argument can be propagated to show that all the edges connecting two copies of Gi in G must
be mapped to edges in the same dimension in H. �

Lemma 2. Let H1, . . . , Hn be a collection of n graphs without 4-cycles. Then, every 4-cycle in H is built from two
non-incident edges in one dimension Hj and two non-incident edges in another dimension Hk , where j, k ∈ {1, . . . , n}
and j �= k.
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Proof. Let (ai, bi), (ai, ci), and (ci, di) be possible edges in any graph Hi , i ∈ {1, . . . , n}. Let us assume, without loss
of generality, that the H1 edge (a1a2 . . . an, b1a2 . . . an) belongs to a 4-cycle in H. We will follow the other possible
edges that form that 4-cycle, starting from node a1a2 . . . an. We consider two possibilities for the next edge in the cycle
incident to node b1a2 . . . an.

Case 1: The next edge is an edge (b1a2 . . . an, c1a2 . . . an) in the same dimension H1. Then, we have two possibilities
for the next edge in the cycle.

Case 1.1: The next edge is an edge (c1a2 . . . an, d1a2 . . . an) in the same dimension H1. In this case, to complete
a 4-cycle the fourth edge must be the edge (d1a2 . . . an, a1a2 . . . an). However, this is not possible since H1 does not
contain 4-cycles by definition.

Case 1.2: The next edge is an edge in some other dimension (say H2, without loss of generality). Let the edge
be (c1a2a3 . . . an, c1b2a3 . . . an). In this case, to complete a 4-cycle the fourth edge must be the edge (c1b2a3 . . . an,

a1a2a3 . . . an). However, this is not possible since this is not an edge in H from the construction of the Cartesian
product.

Case 2: The next edge is an edge in some dimension different from H1 (say H2, without loss of generality). Let the
edge be (b1a2a3 . . . an, b1b2a3 . . . an). Then, we have four possibilities for the next edge in the cycle.

Case 2.1: The next edge is an edge (b1b2a3 . . . an, a1b2a3 . . . an) in the dimension H1. In such a case, the fourth
edge should be the edge (a1b2a3 . . . an, a1a2a3 . . . an), which is in fact an edge in H.

Case 2.2: The next edge is an edge (b1b2a3 . . . an, c1b2a3 . . . an) in the dimension H1. In such a case, the fourth edge
should be the edge (c1b2a3 . . . an, a1a2a3 . . . an). However, this is not possible since this is not an edge in H from the
construction of the Cartesian product.

Case 2.3: The next edge is an edge in the dimension H2. This is impossible by Case 1.
Case 2.4: The next edge is an edge in a different dimension from H1 and H2 (say H3, without loss of gen-

erality). Let the edge be (b1b2a3a4 . . . an, b1b2b3a4 . . . an). In such a case, the fourth edge should be the edge
(b1b2b3a4 . . . an, a1a2a3a4 . . . an). However, this is not possible since this is not an edge in H from the construc-
tion of the Cartesian product.

Therefore, any 4-cycle in H has two non-adjacent edges in one dimension and the other two in a different dimension.
�

Lemma 3. Let G1, . . . , Gn be a collection of n connected graphs, let H1, . . . , Hn be a collection of n graphs without
4-cycles, and let e be an edge of Gi , i ∈ {1, . . . , n}. If G⊆MH then, under mapping M, all the e edges in all copies of
Gi in G are mapped to the same dimension in H.

Proof. From Lemma 1, the edges e of two adjacent copies of Gi in G are mapped into H in such a way that they are
connected by edges in the same dimension forming 4-cycles. From Lemma 2, these 4-cycles have two non-adjacent
edges in one dimension and the other two in a different dimension. Then, when one copy of Gi has e mapped into one
dimension, in any adjacent copy e must be mapped to the same dimension. Since the graphs G1, . . . , Gn are connected,
the above argument may be extended to every copy of Gi . �

Theorem 4. Let G1, . . . , Gn be n connected graphs with at least one edge and let H1, . . . , Hn be n graphs without 4-
cycles. Then,G⊆MH implies that there exists a one-to-one correspondence f between {G1, . . . , Gn} and {H1, . . . , Hn}
such that Gi ⊆ f (Gi), i ∈ {1, . . . , n}.

Proof. Let G ⊆ H as defined by mapping M and assume, by the way of contradiction, that either f is not defined for
some Gi ∈ {G1, . . . , Gn} or f is fully defined but it is not a one-to-one correspondence between {G1, . . . , Gn} and
{H1, . . . , Hn}. We will consider these two cases separately.

Case 1: f is not defined for some Gi ∈ {G1, . . . , Gn}, i.e., there is a Gi that is not a subgraph of any Hj . Let
us assume, without loss of generality, that no copy of G1 is mapped, under mapping M, completely into a copy of
some graph Hj . Note that, from Lemma 3, all the copies of a given edge e of G1 are mapped into edges of the same
dimension in H, i.e., they are all mapped to Hj -edges, for some j ∈ {1, . . . , n}. Hence, there are two adjacent edges
of G1 mapped to two different dimensions in H, and these two dimensions are the same for all the copies of G1. Let
us assume, without loss of generality, that these dimensions are H1 and H2. We will denote the subgraph of G1 formed
by these two edges and their attached nodes by G′

1.
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We will take now a subgraph of G, which we will denote G′, by taking just a subgraph G′
i with two adjacent nodes,

and the edge connecting them, of every graph Gi , i ∈ {2, . . . , n}, and defining G′ = ∏n
i=1 G′

i . Clearly, G′ ⊆ G, and
the mapping M is still defined for the nodes of G′ and implies that G′ ⊆ H.

Observe now that in G′ a given copy of G′
1 is connected to n − 1 other copies of G′

1 by means of G′
i-edges,

i ∈ {2, . . . , n}. Also, the G′
i-edges with those of G′

1 form 4-cycles, from the construction of the Cartesian product.
From Lemma 1, all the edges connecting two copies of G′

1 must be mapped to edges in the same dimension in H
and, from Lemma 2, all the 4-cycles in H are formed by two edges in one dimension (facing each other) and two in a
different dimension. Hence, since the edges of all the copies of G′

1 are mapped to edges of H1 and H2, the G′
i-edges

can only be mapped to dimensions H3, . . . , Hn. That means that the edges of at least two dimensions G′
i and G′

j , where
i, j ∈ {2, . . . , n} and i �= j , are mapped to the same dimension Hl , l ∈ {3, . . . , n}.

However, from the construction of the Cartesian product, any two adjacent edges of G′
i and G′

j are part of a 4-cycle
in G′, and from Lemma 2 have to be mapped to different dimensions in H. Thus, we have come to a contradiction and
we can conclude that f must be defined for every Gi ∈ {G1, . . . , Gn}.

Case 2: Assume now that f is defined for every Gi ∈ {G1, . . . , Gn} but it is not a one-to-one correspondence, that is,
for some i, j ∈ {1, . . . , n}, i �= j , f (Gi)=f (Gj ). This means that, under mapping M, all the edges of all the copies of
two different graphs Gi and Gj have been mapped to the same dimension Hl in H, where i, j, l ∈ {1, . . . , n}. Since
the copies of Hl in H are disjoint, we must have that Gi ×Gj ⊆ Hl . Since Gi and Gj have at least one edge, Gi ×Gj

must have at least one 4-cycle. Therefore, Hl must also have at least one 4-cycle and we reach a contradiction. Hence,
f must be a one-to-one correspondence. �

Corollary 4. Let G be a connected graph and H a graph without 4-cycles, then Gr ⊆ Hr implies G ⊆ H .

Note that a number of graphs used as factors to construct interconnection networks have no 4-cycles (except in
specific instances), e.g., the linear array, the ring, any tree, the cube-connected cycles, the mesh of trees [6], or the
Petersen graph [9]. Hence, these results can be applied to products or powers of these graphs.

5. Containment on products with the linear array

In this section, we explore containment results for products of arbitrary graphs G and H with the same linear array
Ln. We first present one condition that makes G be contained in H if G × Ln is contained in H × Ln. Then, we end the
section by showing that, in general, G × Ln ⊆ H × Ln does not imply G ⊆ H .

The following theorem presents a condition that guarantees the containment of the factor graphs. Recall that B(G, a)

is the minimum number of edges that have to be removed to break G into two subgraphs that differ in at most a nodes.

Theorem 5. Let G be connected and |H | < n · B(G, �|H |/n�), then G × Ln ⊆ H × Ln implies G ⊆ H .

Proof. We start by showing that if after mapping G × Ln into H × Ln two adjacent copies of G are not connected by
H-edges, then G ⊆ H . Then, we derive that, if that is not the case, each copy of H contains the same subset of nodes
from all the copies of G, leading to the result.

First, assume that some Ln-edge of G × Ln is mapped to an Ln-edge in H × Ln. Without loss of generality, we can
assume that it is edge (u1, u2), where u ∈ VG. Then, from Lemma 1, all the edges connecting the G-copies G1 and G2
are mapped to Ln-edges.

Furthermore, all the edges of these copies of G have to be mapped to H-edges. This can be easily shown by
contradiction. Let us assume, without loss of generality, that (u1, u2) is mapped to the edge (x1, x2), x ∈ VH , and
that (u, v) ∈ EG. Let us assume (u1, v1) is not mapped to an H-edge. Then, it has to be mapped to the edge (x0, x1),
because node u2 is already mapped to x2. But, independently of how the edge (u2, v2) is mapped, it is not possible that
the image of v2 is connected to x0, image of v1. Therefore, we reach a contradiction and all the G-edges for the two
copies are H-edges. This implies that H contains all the edges of G, and G ⊆ H .

Let us assume now that all the Ln-edges of G × Ln are mapped to H-edges in H × Ln. Therefore, each copy of Ln

in G × Ln is fully mapped into a copy of H. Clearly, the maximum number of copies of Ln that can be contained in
one copy of H is �|H |/n�. We will denote this value as a for brevity.
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Thus, each copy of H contains the same subset of nodes from all the copies of G. The maximum number of nodes
in the subset is a. We can define, then, n disjoint subgraphs of G, namely G0, . . . , Gn−1, where Gi is the subgraph of
each copy of G mapped to the copy Hi . Since Hi is only connected to H(i − 1) and H(i + 1), Gi is only connected to
Gi−1 and Gi+1 in G.

In any case, the number of edges connecting two adjacent copies of H is |H |. Now, since each copy of H hosts up to
a nodes from each copy of G, it is possible to find an index p such that

∑p−1
i=0 |Gi | − ∑n−1

i=p |Gi |�a. The number of
edges connecting Gp−1 and Gp is at least B(G, a).

Thus, since each Hi holds n copies of Gi , there must be at least n B(G, a) edges connecting H(p − 1) and Hp.
Therefore, |H |�n B(G, a). �

Since the exact value of B(G, �|H |/n�) may not be easy to obtain, we can use the maximal congestion C(G) to
obtain a lower bound on it. This yields the following corollary.

Corollary 5. Let G be connected and |H | < n · |G|2 − �|H |
n

�2/2C(G), then G × Ln ⊆ H × Ln implies G ⊆ H .

Proof. We simply obtain a lower bound on B(G, a) by using the maximal congestion C(G). The result follows from
this bound and Theorem 5.

We know that the number of edges connecting a subgraph with k nodes of the |G|-node directed complete graph
with the rest of the graph is 2k(|G| − k). Given the definition of maximal congestion, it is easy to see that the number
of edges in G connecting a subgraph with k nodes with the rest of the graph is at least 2k(|G| − k)/C(G). Without loss
of generality we can assume k� |G| − k.

Note that the closer the values k and |G| − k are, the larger this bound is. To obtain a lower bound we can assume
their difference is exactly a, the largest allowed. Then k = (|G| − a)/2 and |G| − k = (|G| + a)/2. This yields the
lower bound B(G, a)�(|G|2 − a2)/2C(G). �

Upper bounds on the maximal congestion for many popular graphs are easily obtained [6,5]. Those bounds can be
used with the above corollary. For other graphs different lower bounds on B(G, a) can be used, like the minimum cut
of G.

Given this result we could expect that maybe G×Ln ⊆ H ×Ln always implies G ⊆ H . The following result shows
that this is not the case, even for special classes of graphs.

Theorem 6. Let G and H be connected graphs and |G| = |H |, even then G × L2 ⊆ H × L2 does not imply G ⊆ H .

Proof. We prove the claim by presenting two graphs G and H such that G is not a subgraph of H but G × L2 is a
subgraph of H × L2. Fig. 4 presents such graphs.

By inspection it can be seen that G is not contained in H. G has two 4-cycles with one diagonal, connected with one
middle node from nodes incident to the diagonal. It can be seen that in H there are only four 4-cycles with diagonals,
and that those connected with a middle node share one node. Therefore, G is not in H.

However, G × L2 is contained in H × L2 as shown in Fig. 5. This figure shows the two copies of H contained in
H × L2 and only the necessary edges connecting them. The graph G × L2 contained in the subgraph shown has been
highlighted, presenting the G-edges with thick solid lines, and the Ln-edges with dashed lines.

G H

Fig. 4. Graphs G and H.
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Fig. 5. G × L2 is contained in H × L2. Some edges from H × L2 have been omitted for the sake of clarity.

Therefore, G is not contained in H but G × L2 is contained in H × L2, and the proof is complete. �

6. Conclusions

In this paper, we study the containment properties of factor graphs given the containment of product and power
graphs, presenting positive and negative results. We show here that it is possible in some cases to derive containment
properties of the factors given the containment of the products.

There are several interesting questions that remain open after this work. For instance, it would be nice to find simpler
sufficient conditions for containment than the ones described in Theorem 4 and Corollary 4. Another interesting line
of work is to find embedding properties for the factor graphs derived from the embedding properties of the products
(i.e., to relax the unit dilation and congestion requirement of containment).
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Appendix A. Mapping for the proof of Theorem 3

The following is a mapping of the vertices of graph G2 into those of graph H 2 found to prove Theorem 3.

(0, 0) → (0, 1) (4, 0) → (0, 6) (8, 0) → (0, 11) (12, 0) → (0, 3)

(0, 1) → (1, 1) (4, 1) → (1, 6) (8, 1) → (1, 11) (12, 1) → (1, 3)

(0, 2) → (2, 1) (4, 2) → (2, 6) (8, 2) → (2, 11) (12, 2) → (2, 3)

(0, 3) → (3, 1) (4, 3) → (3, 6) (8, 3) → (3, 11) (12, 3) → (3, 3)

(0, 4) → (0, 0) (4, 4) → (0, 5) (8, 4) → (0, 10) (12, 4) → (0, 15)

(0, 5) → (1, 0) (4, 5) → (1, 5) (8, 5) → (1, 10) (12, 5) → (1, 15)

(0, 6) → (2, 0) (4, 6) → (2, 5) (8, 6) → (2, 10) (12, 6) → (2, 15)

(0, 7) → (3, 0) (4, 7) → (3, 5) (8, 7) → (3, 10) (12, 7) → (3, 15)

(0, 8) → (0, 4) (4, 8) → (0, 9) (8, 8) → (0, 14) (12, 8) → (0, 12)

(0, 9) → (1, 4) (4, 9) → (1, 9) (8, 9) → (1, 14) (12, 9) → (1, 12)

(0, 10) → (2, 4) (4, 10) → (2, 9) (8, 10) → (2, 14) (12, 10) → (2, 12)

(0, 11) → (3, 4) (4, 11) → (3, 9) (8, 11) → (3, 14) (12, 11) → (3, 12)

(0, 12) → (0, 13) (4, 12) → (0, 8) (8, 12) → (0, 2) (12, 12) → (0, 7)

(0, 13) → (1, 13) (4, 13) → (1, 8) (8, 13) → (1, 2) (12, 13) → (1, 7)

(0, 14) → (2, 13) (4, 14) → (2, 8) (8, 14) → (2, 2) (12, 14) → (2, 7)

(0, 15) → (3, 13) (4, 15) → (3, 8) (8, 15) → (3, 2) (12, 15) → (3, 7)

(1, 0) → (4, 1) (5, 0) → (4, 6) (9, 0) → (4, 11) (13, 0) → (4, 3)

(1, 1) → (5, 1) (5, 1) → (5, 6) (9, 1) → (5, 11) (13, 1) → (5, 3)

(1, 2) → (6, 1) (5, 2) → (6, 6) (9, 2) → (6, 11) (13, 2) → (6, 3)
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(1, 3) → (7, 1) (5, 3) → (7, 6) (9, 3) → (7, 11) (13, 3) → (7, 3)

(1, 4) → (4, 0) (5, 4) → (4, 5) (9, 4) → (4, 10) (13, 4) → (4, 15)

(1, 5) → (5, 0) (5, 5) → (5, 5) (9, 5) → (5, 10) (13, 5) → (5, 15)

(1, 6) → (6, 0) (5, 6) → (6, 5) (9, 6) → (6, 10) (13, 6) → (6, 15)

(1, 7) → (7, 0) (5, 7) → (7, 5) (9, 7) → (7, 10) (13, 7) → (7, 15)

(1, 8) → (4, 4) (5, 8) → (4, 9) (9, 8) → (4, 14) (13, 8) → (4, 12)

(1, 9) → (5, 4) (5, 9) → (5, 9) (9, 9) → (5, 14) (13, 9) → (5, 12)

(1, 10) → (6, 4) (5, 10) → (6, 9) (9, 10) → (6, 14) (13, 10) → (6, 12)

(1, 11) → (7, 4) (5, 11) → (7, 9) (9, 11) → (7, 14) (13, 11) → (7, 12)

(1, 12) → (4, 13) (5, 12) → (4, 8) (9, 12) → (4, 2) (13, 12) → (4, 7)

(1, 13) → (5, 13) (5, 13) → (5, 8) (9, 13) → (5, 2) (13, 13) → (5, 7)

(1, 14) → (6, 13) (5, 14) → (6, 8) (9, 14) → (6, 2) (13, 14) → (6, 7)

(1, 15) → (7, 13) (5, 15) → (7, 8) (9, 15) → (7, 2) (13, 15) → (7, 7)

(2, 0) → (8, 1) (6, 0) → (8, 6) (10, 0) → (8, 11) (14, 0) → (8, 3)

(2, 1) → (9, 1) (6, 1) → (9, 6) (10, 1) → (9, 11) (14, 1) → (9, 3)

(2, 2) → (10, 1) (6, 2) → (10, 6) (10, 2) → (10, 11) (14, 2) → (10, 3)

(2, 3) → (11, 1) (6, 3) → (11, 6) (10, 3) → (11, 11) (14, 3) → (11, 3)

(2, 4) → (8, 0) (6, 4) → (8, 5) (10, 4) → (8, 10) (14, 4) → (8, 15)

(2, 5) → (9, 0) (6, 5) → (9, 5) (10, 5) → (9, 10) (14, 5) → (9, 15)

(2, 6) → (10, 0) (6, 6) → (10, 5) (10, 6) → (10, 10) (14, 6) → (10, 15)

(2, 7) → (11, 0) (6, 7) → (11, 5) (10, 7) → (11, 10) (14, 7) → (11, 15)

(2, 8) → (8, 4) (6, 8) → (8, 9) (10, 8) → (8, 14) (14, 8) → (8, 12)

(2, 9) → (9, 4) (6, 9) → (9, 9) (10, 9) → (9, 14) (14, 9) → (9, 12)

(2, 10) → (10, 4) (6, 10) → (10, 9) (10, 10) → (10, 14) (14, 10) → (10, 12)

(2, 11) → (11, 4) (6, 11) → (11, 9) (10, 11) → (11, 14) (14, 11) → (11, 12)

(2, 12) → (8, 13) (6, 12) → (8, 8) (10, 12) → (8, 2) (14, 12) → (8, 7)

(2, 13) → (9, 13) (6, 13) → (9, 8) (10, 13) → (9, 2) (14, 13) → (9, 7)

(2, 14) → (10, 13) (6, 14) → (10, 8) (10, 14) → (10, 2) (14, 14) → (10, 7)

(2, 15) → (11, 13) (6, 15) → (11, 8) (10, 15) → (11, 2) (14, 15) → (11, 7)

(3, 0) → (12, 1) (7, 0) → (12, 6) (11, 0) → (12, 11) (15, 0) → (12, 3)

(3, 1) → (13, 1) (7, 1) → (13, 6) (11, 1) → (13, 11) (15, 1) → (13, 3)

(3, 2) → (14, 1) (7, 2) → (14, 6) (11, 2) → (14, 11) (15, 2) → (14, 3)

(3, 3) → (15, 1) (7, 3) → (15, 6) (11, 3) → (15, 11) (15, 3) → (15, 3)

(3, 4) → (12, 0) (7, 4) → (12, 5) (11, 4) → (12, 10) (15, 4) → (12, 15)

(3, 5) → (13, 0) (7, 5) → (13, 5) (11, 5) → (13, 10) (15, 5) → (13, 15)

(3, 6) → (14, 0) (7, 6) → (14, 5) (11, 6) → (14, 10) (15, 6) → (14, 15)

(3, 7) → (15, 0) (7, 7) → (15, 5) (11, 7) → (15, 10) (15, 7) → (15, 15)

(3, 8) → (12, 4) (7, 8) → (12, 9) (11, 8) → (12, 14) (15, 8) → (12, 12)

(3, 9) → (13, 4) (7, 9) → (13, 9) (11, 9) → (13, 14) (15, 9) → (13, 12)

(3, 10) → (14, 4) (7, 10) → (14, 9) (11, 10) → (14, 14) (15, 10) → (14, 12)

(3, 11) → (15, 4) (7, 11) → (15, 9) (11, 11) → (15, 14) (15, 11) → (15, 12)

(3, 12) → (12, 13) (7, 12) → (12, 8) (11, 12) → (12, 2) (15, 12) → (12, 7)

(3, 13) → (13, 13) (7, 13) → (13, 8) (11, 13) → (13, 2) (15, 13) → (13, 7)

(3, 14) → (14, 13) (7, 14) → (14, 8) (11, 14) → (14, 2) (15, 14) → (14, 7)

(3, 15) → (15, 13) (7, 15) → (15, 8) (11, 15) → (15, 2) (15, 15) → (15, 7)
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