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In this article, we propose several variations of the ad-
versarial queueing model and address stability issues of
networks and protocols in those proposed models. The
first such variation is the priority model, which is di-
rected at static network topologies and takes into ac-
count the case in which packets can have different pri-
orities. Those priorities are assigned by an adversary at
injection time. A second variation, the variable priority
model, is an extension of the priority model in which the
adversary may dynamically change the priority of pack-
ets at each time step. Two more variations, namely the
failure model and the reliable model, are proposed to
cope with dynamic networks. In the failure and reliable
models the adversary controls, under different con-
straints, the failures that the links of the topology might
suffer. Concerning stability of networks in the proposed
adversarial models, we show that the set of universally
stable networks in the adversarial model remains the
same in the priority, variable priority, failure, and reliable
models. From the point of view of protocols (or queueing
policies), we show that several protocols that are uni-
versally stable in the adversarial queueing model remain
so in the priority, failure, and reliable models. However,
we show that the longest-in-system (LIS) protocol,
which is universally stable in the adversarial queueing
model, is not universally stable in any of the other mod-

els we propose. Moreover, we show that no queueing
policy is universally stable in the variable priority model.
Finally, we analyze the problem of deciding stability of a
given network under a fixed protocol. We provide a char-
acterization of the networks that are stable under first-
in-first-out (FIFO) and LIS in the failure model (and there-
fore in the reliable and priority models). This
characterization allows us to show that the stability
problem under FIFO and LIS in the failure model can be
solved in polynomial time. © 2004 Wiley Periodicals, Inc.
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1. INTRODUCTION

The model of Adversarial Queueing Theory (AQT) pro-
posed by Borodin et al. [8] considers the time evolution of
a packet-routing network as a game between an adversary
and a queueing policy. At each time step the adversary may
inject a set of packets at some of the nodes. For each packet
the adversary specifies the sequence of edges that it must
traverse, after which the packet will be absorbed. If more
than one packet tries to cross an edge e at the same time
step, then the queueing policy chooses one of these packets
to be sent across e. The remaining packets wait in the
queue. The system evolves synchronously, and then this
game advances to the next time step. The main goal of the
model is to study stability issues of the network, under
different greedy queueing policies. Stability is the property
of deciding whether at any time the maximum number of
packets present in the system is bounded by a constant that
may depend on system parameters. Recall that a protocol is
greedy if whenever there is at least one packet waiting to
use an edge, the protocol advances a packet through the
edge.

In the adversarial AQT model the adversary is restricted
by a pair (r, b), where b � 0 is the burstiness and 0 � r
� 1 is the injection rate. The adversary must obey the
following rule [4, 8]. For every time interval I,
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Ne�I� � r�I� � b, (1)

where Ne(I) denotes the number of packets injected by the
adversary that have paths containing edge e during the time
interval I.1 In the following, we will refer to the adversarial
AQT model simply as the adversarial model.

In this article we consider generalizations of the adver-
sarial AQT model that take into account the possibility that
packets may have different (prefixed and dynamically
changing) priorities. Inspired by the priority models and by
the growing importance of wireless mobile networks, we
also consider some variations of the adversarial model for
dynamic networks.

1.1. Models of Traffic with Priorities

Considering priorities is a natural approach to model
contemporary networks. Today’s networked applications,
such as data mining, e-commerce, and multimedia, are
bandwidth hungry and time sensitive. These applications
need networks that accommodate these requirements and
guarantee some Quality of Service (QoS). Classifying and
prioritizing network traffic is a basic technique to fulfill
these goals. In most networks this is supported by mapping
into the packets information about the type or the priority of
their contents. For instance, the Internet Protocol (IP) sup-
ports QoS in the header of the packets, for example, by
using the IP Precedence/ToS field. Although rarely used, the
current Internet protocol IPv4 uses three bits of the Type of
Service (ToS) byte to designate the IP Precedence. Eight
priorities are possible, from 0 (default) to 7; the higher the
number, the higher the priority. Then different queues are
supported (priority queueing), which are serviced in strict
order of queue priority. With these services, the routers and
switches can police the traffic entering the network, assign
priority, and ensure optimal paths through the IP network.
In the new version of the protocol, IPv6, a longer traffic
class field is included in the packet header, allowing a more
detailed discrimination of priorities.

We are interested in analyzing the power of an adversary
that can prioritize the packets. We will consider two set-
tings: in the first one, a packet always has the same priority,
while in the second one the adversary is allowed to modify
the priority of a packet. Consequently, we define two new
models for adversarial queueing theory, the priority model
and the variable priority model. When packets have prior-
ities, each edge has a queue associated with every possible
priority value. If at a certain time more than one packet tries
to cross the same edge e, the queueing policy chooses the
packet to be sent across e from the nonempty queue with
highest priority. The limitations on the adversary are the
same as in the adversarial model.

As we said, in the priority model the priority of a packet
is fixed at injection time and never changes, while in the
variable priority model the adversary decides the priority of
a packet at each time step. We will assume that the number
of possible priorities that the adversary can use is prefixed.

1.2. Models for Dynamic Networks

Inspired by the priority models and by the growing
importance of wireless mobile networks, we also consider
some variations of the adversarial model for dynamic net-
works. In wireless mobile networks (ad hoc networks) some
connections between nodes may fail or change quickly and
unpredictably. Hence, in our dynamic network models
edges can appear and disappear arbitrarily. Note that in the
priority model, we can simulate the failure of an edge e by
injecting a packet whose path only contains e with a priority
higher than any other packet in the queue of e. Once this
packet is in the queue, it will be sent first, and the remaining
packets in the queue will have to wait until the next time
step. It seems natural to introduce models for dynamic
networks in which the adversary controls not only the
packet arrivals, but also the edge failures. At any time step,
the adversary can produce the failure of an edge. If an edge
e fails, the packets in e’s queue wait until the moment when
the edge recovers. The constraints of an adversary are
defined taking into consideration the number of time steps
during any interval I that the edge e is down. We assume
that a packet cannot cross a link when it fails, and that
during an edge failure the packets that arrive wait at the
queue of the edge.

Let Fe(I) be the number of steps during a time interval I
in which the edge e is down. We propose suitable restric-
tions on the adversary, obeying the rule: the number of
packets introduced by the adversary during interval I, which
have paths containing e, cannot be greater than the number
of times that e is alive in the interval. Furthermore, as
packets must follow a prespecified path, the adversary
should not be able to fail an edge permanently. To guarantee
that we keep a bound on the maximum number of failures of
an edge e in any time interval, we propose a new model, the
failure model, in which the adversary is controlled by a
common bound on both packet injections and edge failures,
according to the restriction that, for all intervals I,

Ne�I� � Fe�I� � r�I� � b. (2)

Observe than in this case, during a given interval, the
injection rate limits the maximum number of failures and
the maximum number of packet injections per edge.

With the aim of allowing a higher degree of edge fail-
ures, we define a new dynamic model. To do so, we intro-
duce an additional parameter �. Then, in this model the
adversary is characterized by the tuple (r, b, �), where r
and b are defined as before and r � � � 1. For any edge
e and any interval I, the adversary must obey the constraint

1 Recall that in [8], the model is defined over windows of fixed size w and
the equation Ne(I) � r�I�, for �I� � w. It is known that both models are
equivalent [13].
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Ne�I� � �Fe�I� � r�I� � b. (3)

In the model defined by Equation (3), we can consider two
extreme cases: For � � 1 we obtain the same constraint as
Equation (2). However, for � � r we get a model in which
an edge can be permanently down. Notice that, in the case
when r � � � 1, if the adversary produces an edge failure,
then it is forced to recover the edge after at most b/(� � r)
steps, because, otherwise, it will violate Equation (3). We
are interested in this latter property, and will use the term
reliable model to denote a model in which the adversary has
parameters (r, b, �) with r and b as in the adversarial
model, r � � � 1, and which is constrained by Equation
(3).

1.3. Greedy Protocols

As in [4, 8], we will only consider greedy protocols that
apply their policies to the queues at the edges according to
some local or global criteria. The main queueing protocols
we consider are: FIFO, LIFO, SIS, LIS, NTG, FTG, NFS,
and FFS.

The protocol LIFO (last-in-first-out) gives priority to the
packet that arrived latest at the edge queue; in FIFO (first-
in-first-out), precedence is given to the packet that has
arrived first at the queue of the edge. The protocol that gives
precedence to the packet last introduced into the system is
SIS (shortest-in-system), while in LIS (longest-in-system)
every queue gives precedence to the packet that has been in
the system the longest time. The protocol NTG (nearest-to-
go) assigns precedence to the packet that is closest to its
destination and FTG (farthest-to-go) selects the packet that
is farthest away from its destination. NFS (nearest-from-
source) and FFS (farthest-from-source) consider the same
policies but taking the distance to the source node of the
packets as a reference point. NFS is sometimes called NTS
(nearest-to-source). Aside from these protocols, we also
consider the NTG–LIS protocol, which works as NTG, but
resolving ties using the LIS protocol.

It is known that FTG, NTS, SIS, and LIS are universally
stable in the adversarial model while FIFO, LIFO, NTG,
and FFS are not [4].

1.4. Related Work

Two adversarial models for dynamic networks have been
proposed in [6] and [5]. In both models the injected packets
are defined by specifying only their source and destination,
and thus are not forced to follow a prespecified path. In both
cases the adversary is restricted to guarantee that a static
multicommodity flow problem has a solution. Stability re-
sults are obtained using a load-balancing algorithm, for the
case that the adversary injection rate is one, and the packets
have a unique common destination. The main difference in
both models is that in [6], the adversary has to provide a
solution to the associated multicommodity flow problem,

while in [5], the injection pattern must obey a condition that
guarantees the existence of a solution.

The dynamic models proposed in this article consider the
case in which the route to be followed by the injected
packets is completely specified. Our models and the dy-
namic models proposed in [6] and in [5] have the common
characteristic that, for every interval I, the adversary cannot
inject at any edge e (or at any set S of nodes for the model
in [5]) more packets than the number of packets that e can
absorb (or the number of edges with only one extreme in S).

An interpretation of the heterogeneity and dynamicity of
the network as slowdowns in the transmission of packets or
variations in link capacities was studied in [9]. In both
models (slowdown and capacity) packets are injected with a
prespecified path, as in the original adversarial model (and
ours). In their slowdown model, packets suffer delays while
crossing a link. A packet suffers delay d while crossing edge
e if it starts to traverse the link at time t and arrives to the
tail of e at time t � d. During this transfer time the rest of
packets that want to cross e wait in the queue of e. This
article considers two cases: the static case, in which every
link e has a fixed slowdown se (which gives the delay
incurred by any packet that crosses e), and the dynamic
case, in which the slowdown in link e depends of the time
[i.e., if a packet starts to cross e at time t if suffers delay
se(t)]. In the static slowdown, the adversary is controlled by
a pair (r, b)2 and satisfies the condition that for any edge e
and any interval I,

Ne�I� � r
�I�
se

� b, (4)

whereas in the dynamic slowdown model, the adversary is
controlled by a pair (r, b) and is restricted by the condition
that for any edge e and any interval I,

Ne�I� � r �
t�I

1

se�t�
� b, (5)

where for any edge e and any time step t, define se(t)
� maxt�{se(t�)�t� � t � t� � se(t�)}.

The slowdown model has some similarities with the
failure model. In the static case, the slowdown se of an edge
e can be interpreted as “link e fails during se � 1 steps.”
However, there is a difference, because in the slowdown
model a packet p is delayed after leaving e’s queue, while
in the failure model p waits in e’s queue. This means that in
the failure model when e is recovered, the next packet to be
served might not be p.

In the capacity model every edge e in a network has an
integral capacity ce. Again, there are two different models:
the static model, in which ce does not change, and the

2 Although in [9] the adversary is restricted in the window model, for
simplicity, we express it here in the (r, b) model.
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dynamic model, in which ce(t) can be different at every
time step t. In general, at step t a link is able to transmit
simultaneously up to ce(t) packets. The adversary is con-
trolled by a pair (r, b) and the restriction that for every edge
e and every interval I,

Ne�I� � r�I�ce�t� � b. (6)

Note that a zero capacity ce(t) � 0 can be seen as a failure
of link e at time t. This shows that the failure model and the
dynamic capacity model are somewhat related.

There are several results in [9] under these models. First,
they show that every universally stable network remains
universally stable in the slowdown and the capacity models,
even in the dynamic case. Then, they show that SIS, NTS,
and FTG remain universally stable in all the models. How-
ever, the situation is different for LIS, because it is univer-
sally stable in the static slowdown model but it is not in the
dynamic slowdown and capacity models. It has to be
pointed out here that this result does not directly apply to the
failure model, because the proof that LIS is not universally
stable in the dynamic capacity model uses nonzero capaci-
ties (see Theorem 3.1 in [9]) and there is no trivial trans-
formation.

1.5. Our Contributions

In this article we address stability issues in the proposed
adversarial models, namely the failure, reliable, priority,
and variable priority models (see Table 1 for a summary).
Recall that a network is stable under a protocol and an
adversary if the number of packets in the system at any time
step remains bounded. Our first results are concerned with
universal stability of networks. We show that the property
that a network is stable under any adversary and queueing
policy remains the same in the adversarial, priority, variable
priority, failure, and reliable models.

From the point of view of universal stability of queue-
ing policies, we show that NFS, SIS, and FTG (which are
universally stable in the adversarial model [4]) remain so
in the failure, reliable, and priority models. However, we
show that LIS, a universally stable queueing policy in the
adversarial model [4], is not universally stable in the
failure, reliable, and priority models. Moreover, we show
that no protocol is universally stable in the variable
priority model.

Finally, we analyze the problem of deciding stability of

a given network under a fixed protocol. We provide a
characterization of the networks that are stable under FIFO
and LIS in the failure model. Because this characterization
has turned out to be the same as the one given in [2] for
universal stability in the adversarial model, we conclude
that the stability problem in the failure model under the
FIFO and LIS protocols can be solved in polynomial time.
Let us observe that finding the characterization of the sta-
bility under FIFO in the adversarial model remains still an
open problem [2].

2. UNIVERSAL STABILITY OF NETWORKS

Let � denote a model in the set {adversarial, reliable,
failure, priority, variable priority} as defined in the previ-
ous section. A communication system in a model � is
formed by three main components: a network G, where G is
a digraph, a greedy scheduling protocol � and a traffic
pattern �, which is represented by an adversary that follows
the restrictions of �. All the digraphs representing networks
considered in this article may have multiple edges but no
loops. The packets transmitted over those digraphs follow
predefined path trajectories, which might repeat nodes but
not edges. For all the proposed models, we can formally
define different concepts around universal stability in the
following way:

Definition 1. The system S � (G, �, �) is stable in the
model � if, at any time step, the maximum number of
packets in the system is bounded by a fixed value, that may
depend on system parameters.

Definition 2. The pair (G, �) is stable in the model � if,
for any adversary � following the restrictions of �, the
system S � (G, �, �) is stable in �.

The concept of universal stability applies both to net-
works and protocols.

Definition 3. A network G is universally stable in the
model � if, for any greedy queueing policy �, the pair (G,
�) is stable in �.

Definition 4. A greedy protocol � is universally stable in
the model � if, for any digraph G, the pair (G, �) is stable
in �.

TABLE 1. Summary of concepts. For all the models b � 0 and 0 � r � 1.

Model Traffic pattern constraint Additional features

Adversarial (AQT) Ne(I) � r�I� � b —
Priority Ne(I) � r�I� � b Every packet has a fixed priority
Variable priority Ne(I) � r�I� � b Every packet has a variable priority
Failure Ne(I) � Fe(I) � r�I� � b Every link (edge) e might fail
Reliable Ne(I) � �Fe(I) � r�I� � b, r � � � 1 Every link (edge) e might fail
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We want to compare the relative power of the adversar-
ies in the different proposed models. To this aim, we need
to specify when an adversary in any of the models can
simulate another adversary in another different model.

Definition 5. An adversary � in model � simulates ad-
versary �� in model �� when for any network G and any
protocol � if (G, �, �) is stable in �, then (G, ��, �) is
stable in ��.

According to these definitions, now we can state the
following relations:

Lemma 1. (1) Any adversary with parameters (r, b) in the
adversarial model can be simulated by an adversary with
parameters (r, b) in the failure model. (2) Any adversary
with parameters (r, b) in the failure model can be simulated
by an adversary with parameters (r, b, 1) in the reliable
model. (3) Any adversary with parameters (r, b) in the
failure model can be simulated by an adversary with pa-
rameters (r, b) and two different priorities in the priority
model. (4) Any adversary with parameters (r, b, �) in the
reliable model can be simulated by an adversary with
parameters (r � 1 � �, b) in the failure model.

Proof.

1. Any adversary that obeys Equation (1) can be seen as an
adversary constrained by Equation (2) that never forces
an edge failure.

2. By definition.
3. The priority model adversary �� will inject packets with

two priorities, low and high. At each time step, �� injects
with low priority the same packets that � injects. If an
edge e fails, �� injects a packet (e) with high priority.
Observe that the parameters (r, b) for � are also valid
for ��.

4. Given (r, b, �), with r � � � 1, an adversary in the
reliable model obeys the constraint (3). Because � � 1,
Ne(I) � Fe(I) � r�I� � (1 � �) Fe(I) � b. Moreover,
as Fe(I) � �I�, Ne(I) � Fe(I) � r�I� � (1 � �)�I� �
b � (r � 1 � �)�I� � b. Thus, the adversary obeys
Equation (2) of the failure model with r� � 1 � r � �
� 1. ■

Observe that the failure and reliable models are equiva-
lent. Then any stability and instability result for one model
applies to the other as well. Then, for conciseness in the rest
of the article we will only consider the failure and priority
models (nonvariable and variable). Now we can state our
main result in this section.

Theorem 2. Given a digraph G, the following properties
are equivalent: (1) G is universally stable in the adversarial
model, (2) G is universally stable in the failure model, (3) G
is universally stable in the priority model, and (4) G is
universally stable in the variable priority model.

Proof.

1 f 4. For any system S � (G, �, �) in the variable
priority model, we define the system S� � (G, ��,
��) in the adversarial model as follows. At each
time step, �� injects the same packets that � in-
jects (without priority). The queueing policy ��
will determine the packet to be served, simulating
the system S.

4 f 3. By definition.
3 f 2 and 2 f 1. These follow from Lemma 1. ■

3. UNIVERSAL STABILITY OF PROTOCOLS

In this section we address the universal stability property
in the failure and priority models, from the point of view of
the queueing policy. We will consider the basic protocols
presented in the introduction. Recall that FTG, NTS, SIS,
and LIS are universally stable in the adversarial model
while FIFO, LIFO, NTG, and FFS are not [4]. Because any
adversary in the adversarial model can be seen as an adver-
sary in the other models, FIFO, LIFO, NTG, and FFS are
not universally stable in the failure and priority models.
Thus, we will not consider them any further in this section.

We will first show how any adversary with parameters
(r, b) in the priority model can be simulated by an adver-
sary with the same parameters in the adversarial model, for
any protocol � � {FTG, NTG, NFS, FFS}. The simulation
requires us to change the network slightly. Let G be a
directed graph and �� an adversary with parameters (r, b)
in the priority model that uses at most � priorities. Every
injected packet p has a priority �p in the ordered interval
[1, . . . , �], with 1 being the lowest priority.

Lemma 3. For any system S � (G, ��, �) in the priority
model, for � � {FTG, NTG}, there is a system S� � (G�,
��, �) in the adversarial model such that: G is a subgraph
of G�; �� has parameters (r, b); if a packet p is injected in
S at time t with path r, a packet p� is injected in S� at time
t with a path r� obtained by concatenating r and a path of
edges not in G; and if p crosses edge e at time t� in S, p�
crosses e at time t� in S�.

Proof. We first consider FTG and construct G� by
attaching to every node of G as many outgoing disjoint
paths as there are edges incident to the node. Each outgoing
path will be associated with a different incoming edge and
has length (� � 1)d, where d is the length of the longest
directed path in G.

Then each packet p injected in S with priority �p and
path r is replaced in S� by a packet p� that first follows the
same path r and then follows (�p � 1)d edges of the
outgoing path associated to the last edge of r. Observe that
this packet, while it remains in the queues of the original
network G, still has at least (�p � 1)d � 1 edges to cross.
In these queues another packet q� that replaced a packet q
with priority �q � �p still has to cross at most �qd � (�p

NETWORKS—2005 27



� 1)d � 1 edges, and hence, will always be blocked by p�.
Similarly, any packet that replaced one with higher priority
than p will always block p�.

The proof for NTG is similar, but in this case p� has to
cross (� � �p)d edges of the outgoing path. ■

As a consequence of the previous lemma and the results
in [4], we get

Theorem 4. FTG is universally stable in the priority,
failure, and reliable models.

To get a similar result for NFS and FFS we have to relate
two different networks.

Lemma 5. For any system S � (G, ��, �) in the priority
model, for � � {NFS, FFS}, there is a system S� � (G�, ��,
�) in the adversarial model such that: G is a subgraph of
G�; �� has parameters (r, b�), where b� � r(� � 1)d � b;
if a packet p is injected in S with path r, a packet p� is
injected in S� with a path r� obtained by concatenating a
path of edges not in G and r; and if p crosses edge e at time
t in S, p� crosses e at time t in S�.

Proof. We first consider NFS and construct G� by
attaching to every node of G incoming disjoint paths as
follows. For each node s, each edge e leaving s, and each
priority �p � {1, . . . , � � 1}, G� will have b disjoint
incoming paths associated with the pair (e, �p) of length (�
� �p)d whose last node is s.

Then each packet p injected in S with priority �p � � at
time t at the source node s and with edge e as the first edge
in its path is replaced in S� by a packet p� injected at the first
node of one of the b incoming paths associated with (e, �p)
at time t � (� � �p)d. If several packets are injected in S
at the same time with the same initial edge e and the same
priority �p, each uses a different disjoint incoming path
from those associated with (e, �p). Notice that p� follows
the incoming path and then the same path as p. A packet p
with priority �p � � is replaced in S� by a packet p� with
the same injection time and path as in S.

Observe that any packet p� in S�, while in the queues of
the original network G, has already crossed at least (�
� �p)d edges. Similarly, in those queues, any packet q�
that replaced a packet q with priority �q � �p has crossed
at most (� � �q)d � d � 1 � (� � �p)d edges, and
hence, will always block p�. Similarly, any packet that
replaced one with lower priority than p will always be
blocked by p�.

Note that in S� a packet p� can be injected up to (�
� 1)d steps before the packet p it is replacing was
injected in S. Hence, at any time interval I in S� the
maximum number of injections for each edge is r�I� � b
� r(� � 1)d. The first part r�I� � b corresponds to the
packets injected in I in S, and the second part r(� � 1)d,
with the packets of low priority that have been injected
early in S�.

The proof for FFS is similar, but in this case priority �p

is associated with incoming paths of length (�p � 1)d. ■

As a consequence of the previous theorem and the results
in [4], we get

Theorem 6. NFS is universally stable in the priority,
failure, and reliable models.

To show the universal stability of SIS in the priority
model we follow similar arguments to those of Lemma 2.2
in [4] for showing the universal stability of SIS in the
adversarial model.

Lemma 7. For any network G and any adversary ��, the
system (G, ��, SIS) is stable under the priority model.

Proof. The proof is by induction on the number of
priorities. When � � 1 the SIS protocol was shown in [4]
to be universally stable under the adversarial model.

Let us assume that the system (G, ���1, SIS) is stable.
Observe that in (G, ��, SIS) the system formed by the
packets p with �p � 1 is independent of the packets with
priority 1, and therefore, they form a stable system. Let S be
the maximum number of packets in the system requiring
any particular edge, with priority larger than 1, at any time.
Based on [4], we define the following recurrence:

K1 � b � S; Kj�1 �
Kj � b

1 � r

Let d be the length of the longest simple path in G. By a
similar argument to that of Lemma 2.2 in [4], but replacing
b by b � S in the base case of the induction, we can show
that when a packet p, with priority one, arrives at the queue
of the j-th edge ej on its path there are at most Kj � 1
packets requiring any edge e in the path of p with priority
over p.

Then Kd denotes the maximum number of packets with
priority one, in any queue. Therefore, the system with �
priorities is stable. ■

Theorem 8. SIS is universally stable in the priority, fail-
ure, and reliable models.

Even though the universal stability property of FTG,
NFS, and SIS in the adversarial model is preserved in the
priority model, we will see that this is not the case for LIS,
which is universally stable in the adversarial model. The
next result stages the nonuniversal stability of LIS in the
failure model, and therefore, in all the other models. This is
obtained by considering, for example, graph U1 of Figure
1(a), and by showing that U1 is not stable under LIS in the
failure model. That proof is given in Section 4.2 as Lemma
19, where more detailed results about the stability under the
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LIS protocol are provided. Putting this result together with
Lemma 1 we get

Theorem 9. LIS is not universally stable in the failure,
reliable, and priority models.

Finally, we consider universal stability of protocols in
the variable priority model. In this case, the adversary is so
powerful that no protocol is universally stable. In the fol-
lowing lemma, we show that any greedy protocol � is stable
in the network U1.3

Lemma 10. For any greedy protocol �, the pair (U1, �)
is not stable in the variable priority model.

Proof. We will construct an adversary that uses only
two priorities, 0 and 1, with 1 being the highest. The
adversary is described by rounds; during a round the priority

of a packet will not change, but it might be reassigned at the
beginning of the next round. At the beginning there are s
packets that want to traverse edge f, and all of them get
priority 1. The adversary � will play injections in five
rounds:

ROUND 1. For s steps, the adversary injects rs packets of the
form ( fe2) with priority 0. These injections get mixed with
the initial packets at edge f, and are blocked because their
priority is lower, independently of the greedy queueing
policy.

ROUND 2. The adversary assigns priority 1 to the packets
waiting at f’s queue. For the next rs steps, the adversary
injects a set of r2s packets of the form ( fe1) and r2s packets
of the form (e2), all of them with priority 0. Injections ( fe1)
are blocked by the packets ( fe2) from the first round. The
r2s injections of the form (e2) get mixed with packets
( fe2), so that r2s(e2) packets are queued at e2 at the end of
the round.

ROUND 3. The adversary assigns priority 1 to the packets
queued at f and 0 to the packets queued at e2. For the next
r2s steps, the adversary injects r3s packets of the form (e2)
with priority 0 and r3s of the form (e1f ) with priority 0. The
simple injections on e2 get mixed with the packets at e2

from the previous round. At the end of the round there will
be r3s such packets queued at e2. The (e1f ) injections get
mixed with the packets of the form ( fe1) at edge e1. This

3 Instability proofs are usually based on induction. The goal is to demon-
strate that the number of packets in the system increases from phase to
phase (and, by applying the inductive hypothesis, they can increase infi-
nitely). The configuration of the system at the end of each phase must be
the analogous to the configuration at the beginning (in terms of the type of
packets and their location), but with an increased number of packets. For
the sake of simplicity, in our proofs we only reproduce the inductive phase
(which is composed of rounds), and sometimes we omit some additive
constants in our analysis. These omissions, however, do not change the
final result. The proofs of Lemmas 10, 13–16, 19–22 follow the same
schema.

FIG. 1. Family of subgraphs characterizing universal stability in the adversarial model. (a) Basic digraphs
characterizing universal stability in the adversarial model [2]. (b) Extensions of the basic digraphs in Figure 1(a),
where edges have been extended to paths. Let us denote by pk, pl, pm, and pn those paths, where k, m � 1 and
l, n � 0.
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edge at the end of the round will have in total r3s packets of
the form (e1f ).

ROUND 4. The adversary assigns priority 0 to the packets
queued at e1 and priority 1 to the packets queued at e2. For
the next r3s steps, the adversary injects r4s packets of the
form (e2f ) with priority 0 and r4s packets of the form (e1)
with priority 1. The injections at e1 block the last r4s
packets queued at e1 at the beginning of the round. The
(e2f ) injections are blocked by the (e2) packets from the
previous round. So at the end of the round there will be r4s
packets (e2f ) and r4s packets (e1f ) queued at e2 and e1,
respectively.

ROUND 5. The adversary assigns priority 1 to the packets
queued at e1 and e2. For the next r4s steps, the adversary
injects r5s packets of the form ( f ).

At the end there are (r5 � r4)s packets ( f ) in the system.
The adversary � described above makes the network U1

unstable when r5 � r4 � 1, that is, r � 0.857. ■

Hence, we can state,

Theorem 11. There is no universally stable greedy pro-
tocol in the variable priority model.

Now, by using Lemma 4.3 in [4], which implicitly states
that if any protocol is stable for a system then there is also
a stable greedy protocol for the system, we obtain

Corollary 12. There is no universally stable protocol in
the variable priority model.

4. STABILITY UNDER A PROTOCOL

In this section we analyze the complexity of the problem
of deciding whether a given network G is stable under a
fixed protocol �. There are few results for this problem. It
has been shown that deciding stability under NTG–LIS is
polynomially solvable [2]. The polynomial time decidabil-
ity of stability under FFS in the case that the adversary can
solve ties arbitrarily was shown in [1]. Further results for
undirected graphs and other variations can be found in [4]
and [2].

To characterize stability under a given protocol �, first
we start by identifying the families of digraphs that are
stable under �. Then, the simplest digraphs that are not
stable should be identified. By iteratively applying subdivi-
sion operations over those simplest digraphs, we must “ex-
tend” them to define a family of digraphs. Stability under
the protocol � will be characterized once it is shown that
those extensions are not stable under � either. Our results
show the same characterization as in [2], using the same
basic graph family and the exclusion of a set of forbidden
subgraphs. Before formally stating our results, we need to
introduce some theoretical definitions over digraphs. We

consider the following subdivision operations over di-
graphs:

Definition 6. The subdivision of an edge (u, v) in a di-
graph G consists in the addition of a new node w and the
replacement of (u, v) by the two directed edges (u, w) and
(w, v).

Definition 7. The subdivision of a two-cycle (u, v), (v, u)
in a digraph G consists in the addition of a new node w and
the replacement of (u, v), (v, u) by the edges (u, w), (w, u),
(v, w), and (w, v).

Given a digraph G, �(G) denotes the family of digraphs
including G and all the digraphs obtained from G by suc-
cessive edge or two-cycle subdivisions. Given a family of
digraphs �, �(�) denotes the family of digraphs that con-
tain a graph in � as a subgraph.

Figure 1(a) provides the two basic graphs needed to
characterize universal stability, and Figure 1(b) gives the
shape of the extensions of those graphs. This basic family
provides the characterization of the stability properties. It is
known that a digraph is universally stable in the adversarial
model if and only if G � �(�(U1) � �(U2)) [2]. The same
property characterizes network stability under NTG-LIS [2]
and FFS [1]. It is also known that, for a given digraph G,
checking whether G � �(�(U1) � �(U2)) can be done in
polynomial time [2].

Nothing is known about the complexity of deciding
stability in the adversarial model for any other queueing
policy. In the following, we will provide a similar charac-
terization of stability in the failure model under FIFO and
LIS.

4.1. FIFO Stability Under the Failure Model

The FIFO protocol gives precedence to the packet that
arrived first to the queue it schedules. One of the first results
relating the adversarial model and this protocol was ob-
tained in [4], where the FIFO protocol was shown not to be
universally stable.

Much effort has recently been devoted to studying sta-
bility and instability properties of FIFO. A network-depen-
dent absolute constant is provided in [10] such that FIFO is
stable against any adversary with smaller injection rate. A
lower bound of 0.749 for the instability is calculated in [11].
This bound was decreased to 0.5 [12]. In [14], it is shown
that FIFO is stable if the injection rate is smaller than 1/(d
� 1). Recently, it has been proved that FIFO can become
unstable at arbitrarily low injections rates [7].

In the following, we show the instability of the FIFO
protocol in the networks U1, U2 [see Fig. 1(a)] and their
corresponding extensions �(U1) and �(U2) [see Fig. 1(b)]
in the failure model. As a more general result, for network
U2 we show instability in the adversarial model.

The extended graphs are formed by applying the above
introduced subdivision operations over U1 and U2 to paths.
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Let us denote by pk, pl, pm, and pn those paths, where k, m
� 1 and l, n � 0. The number of packets in the initial
configuration is considered to be large enough to guarantee
that the time given to every round is sufficient for the
packets to cross the possible paths ( pk, pl, pm, or pn) in
their packet trajectory and arrive where they are supposed to
arrive. For simplicity, we will omit floors and ceilings, and
sometimes will count steps and packets roughly; by carrying
these through the computations one loses some additive
constants, which are offset by the fact that s was a large
constant.

Lemma 13. The pair (U1, FIFO) is not stable in the
failure model.

Proof. At the beginning there are s packets that want to
traverse edge f. The adversary � will play injections in five
rounds:

ROUND 1. For s steps, the adversary injects rs packets of the
form ( fe2). These injections get mixed with the initial
packets at edge f, and are blocked there because the queue-
ing protocol is FIFO.

ROUND 2. For the next rs steps, the adversary injects a set of
r2s packets of the form ( fe1) and r2s packets of the form
(e2). Injections ( fe1) are blocked by the packets ( fe2) from
the first round. The r2s injections of the form (e2) get mixed
with packets ( fe2), so that r2s(e2) packets are queued at e2.

ROUND 3. For the next r2s steps, the adversary injects r3s
packets of the form (e2) and r3s of the form (e1f ). The
simple injections on e2 will be blocked by the packets at e2

from the previous round. The (e1f ) injections get blocked
by the packets of the form ( fe1) at edge e1. This edge at the
end of the round will have in total r3s packets of which
r3s/(1 � r) are (e1) and r4s/(1 � r) are (e1f ).

ROUND 4. For the next r3s steps, the adversary injects r4s
packets of the form (e2f ) and makes edge e1 fail for r4s
steps. The failures at e1 block the last r4s packets queued at
e1 at the beginning of the round. As the proportion is
maintained, at the end of the round there are r4s/(1 � r)
packets (e1) and r5s/(1 � r) packets (e1f ). The (e2f )
injections are blocked by the (e2) packets from the previous
round.

ROUND 5. For the next r4s steps, the adversary injects r5s
packets of the form ( f ). At the end, there are (r5 � (r5/(1
� r)))s packets ( f ) in the system. The adversary � de-
scribed above makes the network U1 unstable when r5((2
� r)/(1 � r)) � 1, that is, r � 0.920. ■

Lemma 14. The pair (U2, FIFO) is not stable in the
adversarial model.

Proof. We will not use failures. At the beginning there
are s packets that want to traverse edge f2. The adversary �
will play injections in five rounds:

ROUND 1. For s steps, the adversary injects rs packets of the
form ( f2e1e2). These injections get mixed with the initial
packets at edge f2, and are blocked there because the queue-
ing protocol is FIFO.

ROUND 2. For the next rs steps, the adversary injects a set of
r2s packets of the form ( f2e1) and r2s packets of the form
(e2). All the injections ( f2e1) are blocked by the older
packets and stay at the end of the round. The injections (e2)
get mixed with the original packets, so at the end of the
round there are r2s packets that want to cross (e2).

ROUND 3. For the next r2s steps, the adversary injects r3s
packets of the form (e1) and r3s of the form (e2f1f2). The
simple injections on e1 get mixed with the old packets
arriving at e1; at the end there will remain r3s packets that
want to traverse e1. The second set is delayed by the old
packets.

ROUND 4. For the next r3s steps, the adversary injects r4s
packets of the form (e1f2) and r4s packets of the form ( f1).
At the end of the round there are r4s packets that want to
traverse e1f2, (r4s)/(r � 1) packets that want to traverse
f1f2 and (r5s)/(r � 1) packets that want to traverse only f1.

ROUND 5. For the next r4s steps, the adversary injects r5s
packets of the form ( f2). At the end there are (r5 � (r4/(1
� r)))s packets ( f2) in the system. This implies instability
for r � 0.914. ■

Lemma 15. Any graph in �(U1) is not stable under FIFO
in the failure model.

Proof. Observe that, in the FIFO protocol, neither the
length of the path nor the distances to the source or desti-
nation are important for the scheduling decisions. Only the
order of arrival to the queues matters. From this fact, proofs
for instability of U1 and U2 can be easily adapted just by
using an adversary that replaces edges by paths. Notice,
however, that the longer the paths the fewer packets in the
network accumulates. For large enough initial configura-
tions, instability can always be forced.

Let G1 be the graph �(U1) described in Figure 1(b). At
the beginning, there are s packets that want to traverse edge
pm. The adversary � will play injections in five rounds:

ROUND 1. For s steps, the adversary injects rs packets of the
form ( pmpk). These injections get mixed with the initial
packets at the first edge of pm, and are blocked there
because the queueing protocol is FIFO.

ROUND 2. For the next rs steps, the adversary injects a set of
r2s packets of the form ( pmple1) and r2s packets of the
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form ( pk). Injections ( pmple1) are blocked by the packets
( pmpk) from the first round. A total of rm injections of the
form ( pk) are not accumulated. The rest get mixed with
packets ( pmpk), so that r2s � rm packets of the form ( pk)
are queued at the first edge of pk.

ROUND 3. For the next r2s steps, the adversary injects r3s
packets of the form ( pk) and r3s of the form ( ple1pm).
Then, r3s � rm injections on pk will be blocked by the
packets at the first edge of pk remaining from the previous
round. All the ( ple1pm) injections get mixed with the pack-
ets of the form ( pmple1) at the first edge of pl, except rm of
them. At the end of the round this edge will have in total r3s
� rm packets of which r3s � rm/(1 � r) are ( ple1) and
r4s � r2m/(1 � r) are ( ple1pm).

ROUND 4. For the next r3s � rm steps, the adversary injects
r4s � r2m packets of the form ( pkpm) and makes edge e1

fail for r4s � r2m steps. The failures at e1 block the last r4s
� r2m � rl packets queued at the first edge of pl at the
beginning of the round. As the proportion is maintained, at
the end of the round there are r4s � r2m � rl/(1 � r)
packets ( ple1) and r5s � r3m � r2l/(1 � r) packets
( ple1pm). The ( pkpm) injections are blocked by the ( pk)
packets from the previous round.

ROUND 5. For the next r4s � r2m steps, the adversary
injects r5s � r3m packets of the form ( pm). At the end of
this round there are r5s � r3m � ((r5s � r3m � r2l )/(1
� r)) packets ( pm) in the system. The adversary � de-
scribed above makes the network �(U1) unstable when r5s
� r3m � ((r5s � r3m � r2l )/(1 � r)) � s. Note that
(r4m � r2l )/(1 � r) � (m � l )/(1 � r) � C, so for large
enough s, an injection rate r can be found such that (r5

� (r5/(1 � r)))s � C � s holds, and thus G1 � �(U1)
� �(U2) is not stable under FIFO in the failure model. ■

Lemma 16. Any graph in �(U2) is not stable under FIFO
in the failure model.

Proof. Now let G2 be a graph in �(U2) as described in
Figure 1(b). At the beginning there are s packets that want
to traverse edge f2. The adversary � will play injections in
five rounds:

ROUND 1. For s steps, the adversary injects rs packets of the
form ( f2ple1e2). These injections get mixed with the initial
packets at edge f2, and are blocked there because the queue-
ing protocol is FIFO.

ROUND 2. For the next rs steps, the adversary injects a set of
r2s packets of the form ( f2ple1) and r2s packets of the form
(e2). All the injections ( f2ple1) are blocked by the older
packets and stay at the end of the round. The injections (e2)
get mixed with the original packets, so at the end of the
round there are r2s � rl packets that want to cross e2.

ROUND 3. For the next r2s steps, the adversary injects r3s
packets of the form ( ple1) and r3s of the form (e2pnf1f2).
The former get mixed with the old packets arriving at the
first edge of pl, and at the end there will remain r3s packets.
From the second set, r3s � rl packets are delayed by the old
packets.

ROUND 4. For the next r3s steps, the adversary injects r4s
packets of the form ( ple1f2) and provokes r4s failures in e2.
At the end of the round there are r4s packets that want to
traverse ple1f2 and r4s � r2l packets from the previous
round blocked at e2 due to the failures.

ROUND 5. For the next r4s steps, the adversary injects r5s
packets of the form ( f2). Because of the possibly different
lengths of the paths pl and pn, there are r�l � n� injections
that will not be accumulated.

At the end there are (r4 � r5)s � r2l � r�l � n� packets
in the system waiting to traverse f2. The adversary � makes
the network �(U2) unstable when (r4 � r5)s � r2l � r�l
� n� � s. Notice that r2l � r�l � n� � 2l � n � C, so
for large enough s, an injection rate r can be found such that
(r4 � r5)s � C � s holds, and thus G2 � �(U1) � �(U2)
is not stable under FIFO in the failure model. ■

Then, putting all these results together we have:

Lemma 17. Any graph in �(U1) � �(U2) is not stable
under FIFO in the failure model.

As we have pointed out before, all networks G �
�(�(U1) � �(U2)) are universally stable in the adversarial
model. From Theorem 2 the set of universally stable net-
works is the same for all the models considered in this
article (adversarial, failure, priority, and variable priority).
Hence, all networks G � �(�(U1) � �(U2)) are stable
under FIFO in all these models. Taking into account that if
a network has an unstable subnetwork it is also unstable we
get the following result.

Theorem 18. For digraph G, the pair (G, FIFO) is stable
in the failure model if and only if G is universally stable in
the adversarial model.

A corollary of this result is the equivalence between
FIFO stability in the failure model and universal stability in
the adversarial model. Furthermore, as instability in the
failure model implies instability in the priority and reliable
models, the characterization of FIFO stability remains the
same in the priority and reliable models. Observe also that
stability under FIFO can be checked in polynomial time for
the failure, priority, and reliable models.
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4.2. LIS Stability under the Failure Model

The LIS protocol gives priority to the packet that was
longer in the system, that is, that joined the network earlier.
In [4], the LIS protocol was shown to be universally stable
in the adversarial model, with O(b/(1 � r)d) queue size per
edge and delay of the packets of the order O(b/(1 � r)d).
However, as we have shown the protocol is not universally
stable in the failure model. Now we will show that deciding
stability under LIS in the failure model can be performed in
polynomial time.

We proceed as in the case of FIFO by showing, respec-
tively, the instability of the basic graphs given in Figure 1(a)
and their extensions in Figure 1(b).

Lemma 19. The pair (U1, LIS) is not stable in the failure
model.

Proof. At the beginning there are s packets that want to
traverse edge f. An adversary � playing injections exactly
as does the adversary in the analogous Lemma 13 under
FIFO would accumulate r4s � r5s packets in the queue of
edge f at the end of the fifth round. This would make the
system unstable for r � 0.857. ■

Lemma 20. The pair (U2, LIS) is not stable in the failure
model.

Proof. Starting with s packets that want to traverse
edge f2, let � be an adversary playing injections exactly as
the adversary in the analogous Lemma 14 under FIFO. But
the adversary we used in Lemma 14 was not producing
failures, so substitute there the single injections of the form
( f1) at round 4 by failures of edge f1. Thus, at the end of the
fifth round, this would allow r4s � r5s packets to accumu-
late in the queue of edge f2 and prove that the system can
become unstable for r � 0.857. ■

Lemma 21. Any graph in �(U1) is not stable under LIS in
the failure model.

Proof. Let G1 be the graph �(U1) described in Figure
1(b). At the beginning there are s packets that want to
traverse edge pm. The adversary � will play injections in
five rounds exactly as the adversary for FIFO (see Lemma
13) but modifying the packet trajectories by extending them
to paths: where e1 appears put ple1, and replace e2 and f in
paths by pk and pm, respectively.

Also, instead of making edge e1 fail at the fourth round,
this adversary makes the first edge of pl fail. At round five,
because of the possibly different lengths of the paths pl and
pk, there are r�l � k� injections that will not be accumu-
lated. The number of packets in the initial configuration is
considered to be large enough to guarantee that packets
arrive at the first edge of pm. This adversary makes the
system unstable under LIS when r4s � r2m � r5s � r3m
� r�k � l� � s. Notice that r2m � r3m � r�k � l� � 2m

� l � k � C and, for large enough s, an injection rate r can
be found such tat (r4 � r5)s � C � s holds, thus showing
instability of G1 under FIFO in the failure model. ■

Lemma 22. Any graph in �(U2) is not stable under LIS in
the failure model.

Proof. Now let G2 be the graph �(U2) described in
Figure 1(b). At the beginning there are s packets that want
to traverse edge f2. The adversary � will play injections in
five rounds. For the first three rounds it injects the same kind
of packets as the adversary for FIFO (see Lemma 14) but
modifying the packet trajectories by extending them to
paths: where e1 appears put ple1, and replace e2 in paths by
e2pn. We show the last two rounds:

ROUND 4. At the beginning there are r3s packets of the form
( ple1) and r3s � rl packets of the form (e2pnf1f2). For the
next r3s steps, the adversary injects r4s packets of the form
(e1f2) and causes r4s failures in edge f1. From the injections
in e1, only r4s � rl will remain at the end of the round. The
failures will accumulate r4s � rn � r2l packets that want
to traverse f1f2.

ROUND 5. During r4s � rl steps, the adversary injects r5s
� r2l packets ( f2).

When the fifth round finishes, there are (r4 � r5)s � 2r2l
� rn packets at f2. Thus, instability would hold under LIS
when (r4 � r5)s � 2r2l � rn � s. Notice that 2r2l � rn
� 2l � n � C and, for large enough s, an injection rate r
can be found such that (r4 � r5)s � C � s holds, thus
showing instability of G2 under LIS in the failure model.

■

Lemma 23. Any graph in �(U1) � �(U2) is not stable
under LIS in the failure model.

Therefore, as in the case of FIFO, we have

Theorem 24. A digraph G is stable under LIS in the
failure model if and only if G is universally stable in the
adversarial model.

Again, stability under LIS in the failure, reliable, and
priority models coincides with universal stability in the
adversarial model, and therefore, it can be checked in poly-
nomial time for the failure, priority, and reliable models.

4.3. The Variable Priority Model

For the variable priority model the situation is simpler. It
is easy to adapt the proof of Lemma 14 to get instability
results for the graph U2. This together with Lemma 10 gives
the following result.
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Lemma 25. Let � be any greedy protocol. Any graph in
�(U1) � �(U2) is not stable under � in the variable priority
model.

Therefore, we have

Theorem 26. Let � be any greedy protocol. A digraph G
is stable under � in the variable priority model if and only
if G is universally stable in the adversarial model.

5. CONCLUSIONS AND OPEN PROBLEMS

We have proposed several variations on the adversarial
model to cope with packet priorities and link failures. We
have studied universal stability from the point of view of
both the network and the queueing policy. We have also
addressed the complexity of deciding stability under a fixed
protocol.

We have shown that in the adversarial, failure, reliable,
priority, and variable priority models, the set of networks
that are universally stable remains the same. The models
present a different behavior with respect to the universal
stability of protocols, because LIS is universally stable in
the adversarial model, but it is not universally stable in the
other models. In contrast, we have shown that there are no
universally stable protocols for the variable priority model.

We have proposed a new and natural way to model the
behavior of queueing systems in dynamic networks. Com-
pared to the slowdown models introduced in [9], our results
show that the power of an adversary in the failure and in the
dynamic slowdown model is quite similar. In both cases the
LIS protocol is not universally stable. However, the static
slowdown model is less powerful than the failure model as
LIS remains universally stable [9].

The argument used in the proof of Theorem 4.1 in [9] can
be used to show how to construct an adversary in the
variable priority model that simulates an adversary in the
dynamic slowdown model. It would be of interest to find
constructions, similar to those given in Lemmas 3 and 5, to
relate the power of the slowdown and failure models with-
out changing the protocol.

Regarding the dynamic capacity model, the authors fre-
quently use the trick of injecting c � ce(t) dummy packets,
which only need to traverse link e. This can be done without
violating the load condition for a network with static capac-
ity c provided that ce(t) � 0 (see Theorems 3.3 and 3.4 in
[9]). It will be of interest to analyze the case with zero
capacities.

It remains as an open problem to show the existence of
a protocol that is universally stable in the failure model but
not in the priority model.

All the already known characterizations of stability un-
der a protocol are equivalent to universal stability in the
adversarial model, even in the variable priority model. It is
an interesting open question to know whether there is any
protocol �, not universally stable, for which there are
networks that are not universally stable but that are stable

under �. Additional open questions concerning this prop-
erty are given in Figure 2.

The presented characterization of stability under given
protocols, as is common in the literature, allows the adver-
sary to inject packets with nonsimple paths. It would be
interesting to derive stability characterizations when the
adversary can inject simple paths only.

The most general adversarial model considering failures
would be one in which the adversarial injections (requiring
any edge e during the time interval I) would be constrained
by

Ne�I� � r��I� � Fe�I�� � b. (7)

In such a case the number of consecutive time steps in
which an edge can be down is unlimited. Observe that
having an adversary that makes an edge e fail forever after
some step is equivalent, from the point of view of stability,
to considering the network that results from removing e
from the set of edges. Then, we would deal with a system
with a simpler topology with an additional finite set of
packets requiring e that would be kept in the system forever.
Therefore, the interesting cases are those in which the
adversary follows restriction (7) but cannot make an edge
fail forever. A restricted version modeling only short-lived
failures was considered in [3]. The �1 model in [3] is
obtained when considering restriction (7) and the existence
of a w bounding the number of consecutive steps that any
edge can be failed. In [3], it is shown that the �1 model is
equivalent to the failure model. The remaining natural
model to study would consider that the duration of a failure
is not infinite but is not bounded either. To the best of our
knowledge, every question concerning stability in such a
model is currently an open question.

Acknowledgments

Part of this work was presented in 28th International
Symposium on Mathematical Foundations of Computer Sci-

FIG. 2. Complexity of deciding stability under a protocol in the different
adversarial models. The property is decidable in polynomial time in those
cases labeled with P (the uncited results are provided in this article).
Observe that for LIFO, decidability remains an open question in all the
models. Let us observe that the characterization of FIFO stability in the
adversarial model remains an open problem [2].

34 NETWORKS—2005



ence, Bratislava, Slovakia, 2003. LNCS 2747:142–151,
Springer. We wish to thank the anonymous referees for their
constructive comments on this article.

REFERENCES
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