Available online at www.sciencedirect.com

SCIENCE@DIRECTG’ Informa.tlon
Processing

’ Letters

ELSEVIER Information Processing Letters 90 (2004) 261-266

www.elsevier.com/locatefipl

The complexity of deciding stability under
FFS in the Adversarial Queueing model

C. Alvarez?, M. Blesa?, J. DiaZ*, A. Fernande2, M. Serna

@ Dept. Llenguatges i Sistemes Informatics, Universitdit®mica de Catalunya, Campus Nord, E-08034 Barcelona, Spain
b Grupo de Sistemas y Comunicaciones, Universidad Ray Carlos, Campus de Mostoles, E-28933 Madrid, Spain

Received 24 February 2003; received in revised form 27 October 2003

Communicated by K. lwama

Abstract

We address the problem of deciding whether a given network is stable in the Adversarial Queueing Model when considering
farthest-from-sourc€rr9) as the queueing policy to schedule the packets through its links. We show a characterisation of the
networks which are stable undefsin terms of a family of forbidden subgraphs. We show that the set of networks stable under
FFS coincide with the set of universally stable networks.c8iminiversal stabilityf networks can be checked in polynomial
time, we obtain that stability undeFscan also be decided in polynomial time.
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1. Introduction system once they arrive to their destination. In gen-
eral, at any interval of timd, the number of packets

In recent times, an important model to study sta- that the adversary can inject into the network which
bility and load balancingsisues in non-adaptive rout- require to traverse any linkin their trajectory, cannot
ing has been the Adversarial Queueing TheayT) exceed a certain bound proportional to the length of
model proposed by Borodin et al. [43tability refers the time interval. This bound is set to be|l|] + b,
to the fact that the number of packets in the system where O< r < 1 is theinjection rate(i.e., the fre-
remains bounded as the system dynamically evolves quency at which the adversary introduces packets into
in time. This bound, which can be a function of sys- the network), an@ > 0 is theburstinesgi.e., the max-
tem parameters, is not dependent on time. Stability is imum excess of packets that can be injected in one step
studied considering that a synchronous communica- requiring any particular link).
tion system G, A, P) is formed by three main compo- (Store and forwarjigreedy protocolare those that
nents: the networks, the traffic pattern defined h, forward a packet across an edgewhenever there
and the scheduling protocBl. Networksare modelled is at least one packet waiting to traverse the eelge
with (directed or undirected) graphs in which nodes Three types of packets may wait to traverse an edge
represent the hosts and edges represent the links bein a particular instant of time: the incoming packets
tween these hosts. Theffic patterncontrols where arriving from adjacent edge the packets injected
and how packets join the system and defines their tra- directly into the edge, and the packets that could not be
jectory. Theprotocol determines the order in which  forwarded in previous steps. Since we consider unit-
the packets requiring to cross a link are scheduled to capacity edges, at each step of time only one packet
be forwarded. from those ones is forwarded through the edge; the

Adversarial models have been shown to be good rest are kept in a queue at the head of the edge. In this
theoretical frameworks for traffic pattern in modern work, we consider greedy queueing policies.
communication networks, since they can reflect the = Some natural greedy protocols dnest-in-first-out
behaviour of connection-oriented networks with tran- (FIFO), in which highest priority is given to the packet
sient connections, such asm networks, as well as  that has arrived first in the queue, afadthest-from-
connection-less networks, such as the Internet. Adver- source (FF9), in which highest priority is assigned
sarial models allow to analyse the system in a worst- to the packet that is farthest from its source node.
case scenario, since they have replaced traditional sto-Other protocols ardast-in-first-out (LIFO), nearest-
chastic arrival assumptions in the traffic pattern by from-source(NFs), nearest-to-gaNTG), farthest-to-
worst-case inputs. Recent research on stability hasgo (FTG), shortest-in-systengsis), and longest-in-
mainly considered adversarial models. systen(LIS).

The AQT model considers the time evolution of a Universal stability and stability under a protocol
packet-switched network as a game between an ad-A strongest notion of stability is that dfiniversal
versary and a queueing policy or protocol. The sys- stability. Universal stability can be addressed from the
tem is synchronous, i.e., there is a global notion of network or from the protocol point of view. A network
(discrete)time step The adversary controls the traffic G is universally stable if, for any protocol and any
pattern by injecting at each time step a set of packets adversary, the resulting system is stable. A protocol
into the system. In this work, we considstatic packet P is universally stable if, for any network and any
routing; in this setting, the adversary also specifies for adversary the resulting system is stable.
each packet the complete path that the packet musttra- Concerning the network point of view, it is known
verse. The protocol schedules one step in the advancethat the property is completely characterised and that
of the packets and then, the game goes on to the nextdeciding universal stability of networks can be solved
time step. Since it is mainly interesting to study sta- in polynomial time, even under different network rep-
bility conditions in under-loaded packet networks, the resentation and packet trajectories [1,2]. Concerning
power of the adversary is constrained in order not to the protocol point of view, it is known thaTG, NFS,
trivially collapse the system by exceeding the capacity sisandLis are universally stable, whileiFo, LIFO,
of the links. Moreover, packets do not remain in the NTG andrrFsare not [3].
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For those queueing polices which are not univer- All the digraphs considered in this paper may have
sally stable, a weaker notion of stability (te&bility multiple edges (arcs) but no loopsThe packets
under a protocdlis addressed. Here the problemisto transmitted over those digraphs follow predefipath
decide whether a given network is stable or not under trajectories, which might repeat vertices but not edges.
a fixed queueing policy. Only one result is known: De- We consider the following subdivision operations over

ciding stability undenTc-List is polynomially solv- digraphs:

able and is equivalent to decide universal stability of

networks [2]. e The subdivision of an ardu, v) in a digraphG
In this paper we address the stability problemwhen  consists in the addition of a new vertexand the

the selected queueing policyAss. We show the poly- replacement ofu, v) by the two arcgu, w) and

nomial time decidability of the stability undeFsin (w, v).

the general case in which the adversary can solve ties ¢ The subdivision of a2-cycle («, v), (v,u) in a
arbitrarily. Our main result shows a characterisation of digraphG consists in the addition of a new vertex
the set of networks that are stable undes by iden- w and the replacement ¢, v), (v, u) by the arcs
tifying a family of forbidden subgraphs. Interestingly (u, w), (w,u), (v, w) and(w, v).
enough, the characterisation we obtain is the same as
the characterisation of the digraphs that are universally  Gjven a digraphG, £(G) denotes the family of
stable. This have some nice implications. One of them digraphs formed byG and all the digraphs obtained
is that a digraph is universally stable if and only ifitis  fom G by successive arc or 2-cycle subdivisidhs.
stable underrs Given a family of digraphsF, let us denote as(F)

An interesting open problem is to analyse the com- o family of digraphs that contain a graph/has a
plexity of deciding stability under other protocols, in subgraph.
particular under the populaFo andLiFo protocols. Known results.Concerning the universal stability
of protocols, it was already shown in [3] that the
FFS protocol is not universally stable. Concerning
the universal stability of networks, the property was
characterised in [2] in terms of the forbidden sub-
digraphs for different packet trajectories. Fig. 1(a)
provides the two basic forbidden digraphs needed to
characterise that property when the packets follow
a path trajectory, and Fig. 1(b) gives the shape of
the extensions by (arc and 2-cycle) subdivisions of
those graphs. When packets follow a path trajectory,

2. Preliminaries

TheFFsprotocol gives priority to the packet in the
gueue which is farthest (in terms of distance) from
its source node. When ties among packets with the
same priority happen, we assume that they are broken
arbitrarily by the adversary.

We study the complexity of deciding stability under

FFsin the adversarial queueing model. To characterise this basic famil ides the ch terisati f th
the property of stability underrs, first we need to IS basic family provides the characterisation of the

identify the families of digraphs which are stable universal stability of networks. This result is stated in

under this protocol. Then, the simplest digraphs which the following theorem.
are not stable should be identified. Moreover, by
iteratively applying subdivision operations to those Theorem 1[2]. A digraphG is universally stable if
simplest digraphs, we must “extend” them to define andonly ifG ¢ S(E(U1) U E(U2)).
a family of digraphs. Stability underrs will be
characterised once it is shown that those extensionsare In the same work, it was also shown that this
not stable either. property can be checked in polynomial time.
Before formally stating our results, we need to

introduce some theoretical definitions over digraphs.
2 Multiple edges share the same pair of different endpoints. The
- endpoints of a loop are a unique same vertex.
1 The protocoINTG-LIS works asNTG, but solves ties using the 3 Observe that, for a grapi, £(G)? € £(G9), but it might be
LIS protocol. the case thaf (G)? # £(GY).
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Fig. 1. Representatives of the family of digraphs characterising rgaivstability. (a) The two basic forbidden sub-digraphs. (b) Extensions by

arc subdivision ol/; andUs.
3. Stability under FFS

We analyse the complexity of deciding whether a
given networkG is stable underrFs We express the
stability of a system in the same way as in [3]: given a
digraphG, a queueing polic, and a given adversary
A, we say that the systertG, A, P) is stableif, at
any time step, the maximum number of packets in the
system is bounded. Instabilityan be expressed just
with a pair: given a digrapy and queueing polic,
the pair(G, P) is not stabldf there exists an adversary
A such that the systerG, A, P) is not stable. We
say that a digrapld@; is stable underrrs if, for any
adversaryA, the system(G, A, FF9) is stable.

All acyclic digraphs and directed cycles on any
number of vertices are known to be universally sta-
ble [4,3]. Digraphs formed by connecting acyclically
two universally stable sub-digraphs, are also univer-
sally stable [5]. Thus, those networks are also stable
under therrs protocol. The next networks to consider
are then those depicted in Fig. 1. By Theorem 1 we
know that they are not universally stable. However in
[2] it is shown that they are not stable underc-

LIS, but nothing is known about its stability when the
protocol isrFFs. We prove that they are not stable un-
derFrs

We show first the instability of the two basic
digraph in Fig. 1(a), and then the instability of their
extensions in Fig. 1(b). All our instability proofs are

based on induction. A set of rounds compose a step
of the induction reasoning. The goal is to demonstrate
that the number of packets in the system can increase
from one step to the next (and, by applying the
inductive hypothesis, they can increase infinitely). The
configuration of the system at the end of every step
must be the same as at the beginning (in terms of the
type of packets and their location). For the sake of
simplicity, we only reproduce the inductive step and
sometimes we omit some additive constants in our
analysis, however, those omissions will not change the
final result.

Lemma 1. The pair(Uy, FFS) is not stable.

Proof. Initially we have a sef of s packets trying to
cross the patlfes.

Roundl: for s steps,A injects a seX of rs packets
that try to cros1 and a set’ of rs packets that try to
crossfez. The packets ir§ block both sets.

Round2: for rs steps,A injects a setX’ of r2s
packets that try to cross f and a set”’ of r2s packets
that try to cros®». The setX blocksX’ and the se¥
blocksY’.

Round3: for r2s steps,A injects a setX” of r3s
packets that try to crosg and a set” of r3s packets
that try to crosg; f. The setX” blocksr3s packets of
X’ andY’ blocksY”.
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Round4: for 2-3s steps,A injects a sets’ of 2r4s
packets that try to crosge;. They are blocked by the
remaining packets iX’ andY”.

At the end of the fourth round, there are“?
packets of the formfe;. The adversary described
above achieves thatrs is not stable inU; when
24>1. O

Lemma 2. The pair(Uz, FFS) is not stable.

Proof. Initially we have a sef of s/2 packets that try
to cross the patby f> ands /2 packets that try to cross
the pathes 11 f>.

Roundl: for s stepsA injects a seiX of rs packets
that try to crossfoerez. The packets inS block the
new set at edgé.

Round2: for rs steps.A injects a setX’ of r2s
packets that try to cross and a set’ of r2s packets
that try to crosg; f>. The setX blocks the new packets
at their initial queues.

Round3: for r2s stepsA injects a setX” of r3s
packets that try to cros& f1 f» and a sett’ of r3s
packets that try to cross;. The packets inX” are
blocked by the packets i’ andr3s of the packets
in Y are blocked by the packets .

At the end of the third round, there are-32
packets of the forme; f> and of the formes fi f>.
The adversary described above achievesrigis not
stable inU when 23> 1. O

In the following, we show the instability of any
graph in the family of graphs that are extensions of
the two basic graphs.

Lemma 3. Any graph in€(U1) is not stable under
FFS.

Proof. Let G1 be a graphir€(Uy). If G1 is obtained
after some 2-cycle subdivision, thak; contains a
subgraph ir€ (Uz) and therefore it is not stable under
FFS Let us assume thak; is obtained by successive
arc subdivision as described in Fig. 1(b). This graph
is formed by extending the edges ©@f to paths with
lengthsk, [ and m. Let us denote bypx, p; and
pm those paths, where,m > 1 and/ > 0. We also
assume that > [, otherwise the adversary will play a
symmetric pattern.

265

The strategy followed by the adversady is the
following. At the beginning there are packets that
want to traverse pathg,, px. The adversaryd plays
injections in four rounds.

Roundl: for s steps,A injects a sei of rs packets
that try to crosg, and a set’ of rs packets that try to
crossp,, pie1. The packets irf blockrs packets from
setY andrs — rm packets of seX.

Round2: for rs steps,A injects a setX’ of r2s
packets that try to crosp; p,, and a sett’ of r2s
packets that try to crossie1. The setX blocksr2s —
rm packets of the set’, and the seY blocksr2s —rm
packets of the sét’.

Round3: for r%s — rm steps,A injects a sef” of
r3s — r’m packets that try to cross; and a set’” of
r3s — r2m packets that try to crogses p,,. The setx”
blocksr3s — r2m packets ofX’ and the set”’ blocks
r3s — r2m packets of”.

Round4: for 2(-3s — r2m) steps,A injects a set
X" of 2(r*s — r3m) packets to crosg,, px. The set
X" is blocked, except for the initiat! injections,
provided that-3s — r?m 4141 > k. The last condition
guarantees a continuous flow of old packets through
pm afterl steps.

When the fourth round finishes, there are at least
2(r%s — r3m) — rl, packets waiting to traverse path
pm Px- Notice that asn, [ and k are fixed, for big
enoughs, an injection rate- can be found such that
2(r%s —r3m) —rl > s andr3s — r2m +1+ 1> k, and
thusG1 is not stable undefFs. O

Lemma 4. Any graph in€(U2) is not stable under
FFS.

Proof. Let G2 be a graph in€(Uz) obtained by
successive arc subdivisions as described in Fig.4(b).
This graph is formed by extending the edgeslbf
to two paths of lengthg andn respectively. Let us
denote byp; and p, those paths, and let us assume
that/,n > 0 and thatn < [. Otherwise, consider an
analogous strategy for the adversary played over the
symmetric network in whicla, plays the role offs.

In the initial step, we have a set of packets
distributed in the following wayx packets that try to

4 Observe that, all the graphs obtained by applying, at least once,
the 2-cycle subdivision operatiomust contain a subgraph that is
obtained fromUU applying only arc subdivisions.
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crossp;e1 f> andg packets that try to cross p,, f1 f2,
wherea + B =s andp > [ + 2.

Round 1: for s steps,.A injects a setX of rs
packets that try to cros® p;e1e2. The conditions >
[ 4+ 2 guarantees a continuous flow of packets frfdm
through f2. The packets ir§ block the new set, but
at most mirr (I + 1), »(n + 2)} injections cannot be
accumulated, so at leasts — n) packets fromx are
blocked.

Round2: for r(s — n) steps,A injects a setX’ of
r2(s — n) packets that try to cross p, and a set’ of
r?(s — n) packets that try to crosges f». The setX
blocks all the new packets, except the firspackets
from X'.

Round3: for r2(s — n) steps.A injects a sef” of
r3(s — n) packets that try to crogsye; and a set”’ of
r3(s — n) packets that try to cross p, f1f2. The set
X" blocksr3(s — n) packets oft and the remaining
packets fronX’ block at least3(s —n) — rl injections
fromY’.

Atthe end of the 3rd round, there are at lea%s —
n) packets that want to traversge; f> and at least
r3(s —n) — rl packets that want to traversgp,, f1 f>.
Thus there are a total of at leasf®s —n) —rl packets
in the system. For large enough, an injection rate

can be found such that the total number of packets is

increased, i.e.,i®(s —n) —Ir > s and thef > [ + 2
initial condition is also satisfiedt3(s —n) —rl > [ +2.
Thus,G> is not stable undefFs. O

It is known that, if a grapl&; has a subgraph which
is not stable, therG is not stable. Taking this into

account, and using all the instability results shown in
Lemmas 1 to 3, we can state the following theorem.

Theorem 2. A digraph G is stable underrsif and
only if G ¢ S(E(U1) U E(Uy)).

Together the previous theorem and the results in [2]
(Theorem 1 and more) provide the following results.

Theorem 3. A digraph G is stable underrrs if and
only if G is universally stable.

Corollary 1. Stability underrrs of a given digraph
can be decided in polynomial time.
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