
On the Impossibility of Implementing Perpetual Failure Detectors in
Partially Synchronous Systems�

Mikel Larrea
Universidad del Paı́s Vasco

20018 Donostia, Spain
mikel.larrea@si.ehu.es

Antonio Fernández
Universidad Rey Juan Carlos

28933 Móstoles, Spain
afernandez@acm.org

Sergio Arévalo
Universidad Rey Juan Carlos

28933 Móstoles, Spain
s.arevalo@escet.urjc.es

Abstract

In this paper we study the implementability of differ-
ent classes of failure detectors in several models of par-
tial synchrony. We show that no failure detector with
perpetual accuracy (namely, P , Q, S, and W) can be
implemented in any of the models of partial synchrony
proposed in [3] and [5] in systems with even a single
failure. We also show that, in these models of partial
synchrony, it is necessary a majority of correct processes
to implement a failure detector of class �.

1. Introduction

The Consensus problem is considered one of the fun-
damental problems in distributed computing. However,
it was shown by Fischer et al. [6] that the Consensus
problem cannot be solved deterministically in an asyn-
chronous system in which processes can fail. This re-
sult generated a series of works that tried to identify the
amount of synchrony needed to solve Consensus in the
presence of failures, and showed how to solve Consen-
sus in these partially synchronous systems [4, 5].

An alternative and elegant approach to circumvent
the unsolvability of Consensus in asynchronous systems
was proposed by Chandra and Toueg [3]. They aug-
mented the asynchronous model of computation with
unreliable failure detectors. Informally, an unreliable
failure detector is a distributed “oracle” that gives (pos-
sibly incorrect) hints about which processes of the sys-
tem have crashed. Based on two basic abstract prop-
erties (namely, completeness and accuracy), Chandra
and Toueg proposed eight different classes of unreliable

�Research partially supported by the Spanish Research Coun-
cil, contracts TIC99-0280-C02-02, TEL99-0582, and TIC98-1032-
C03-01, and the Madrid Regional Research Council, contract CAM-
07T/00112/1998.

failure detectors, and showed that Consensus could be
solved in an asynchronous system with any of them.

Chandra-Toueg’s model of unreliable failure detec-
tors can be viewed as an abstract way of incorporating
partial synchrony assumptions into the model of com-
putation. Instead of focusing on the timing assumptions
of a given model of partial synchrony, their model of
failure detectors considers abstract properties that must
be satisfied in order to solve Consensus. However, the
synchrony assumptions are in fact encapsulated in the
failure detector. Clearly, systems using these unreliable
failure detectors are no longer truly asynchronous; they
merely produce the illusion of an asynchronous system
by encapsulating all references to time in the failure de-
tector. This leads to the practical problem of implement-
ing a given failure detector in a specific model of syn-
chrony.

From the FLP impossibility result [6] and the possi-
bility of solving Consensus using unreliable failure de-
tectors [3], it can be derived the impossibility of imple-
menting any of Chandra-Toueg’s classes of failure de-
tectors in a purely asynchronous system. (Such an im-
plementation could be used to solve Consensus in an
asynchronous system, contradicting the FLP impossibil-
ity result.) On the other hand, in a fully synchronous
system even a perfect failure detector (i.e., one that does
not make mistakes) can be implemented. In such a sys-
tem, one can build a simple timeout-based algorithm that
reliably detects the failure of processes.

1.1. Our Results

In this paper we study the possibility of implement-
ing several classes of failure detectors in partially syn-
chronous systems. We start with the eight classes of
failure detectors proposed in [3]. There are already al-
gorithms that implement four of them (3P , 3Q, 3S,
and 3W) in partially synchronous systems [3, 7]. (We
call these classes eventual classes, because they have

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

eventual accuracy.) That leaves us with only four more
classes to consider (P , Q, S, and W), which we call
perpetual classes. We show here that none of these four
classes can be implemented in a partially synchronous
system with failures (even with one single failure). The
partial synchrony assumptions we make in our system
are at least as strong as those made in [3, 5], which
means that our results apply to their models of partial
synchrony as well.

At first glance, our result may seem evident. Never-
theless, even if the proofs are not very difficult, the result
itself is far from being trivial. To understand it, note that
Consensus can be solved – without perpetual failure de-
tectors – in the models of partial synchrony considered
in this paper, while we show that no one of the perpetual
failure detectors defined by Chandra and Toueg can be
implemented in these models. This means that, even if
they suffice, perpetual failure detectors are not necessary
to solve Consensus. Actually, eventual failure detectors
suffice1, which is not strange, knowing that Consensus
requires that the unanimous decision has to be reached
eventually. From the previous, it can also be derived that
the problem of implementing perpetual failure detectors
is harder than solving Consensus in the models of partial
synchrony considered in this paper.

We complete this paper showing that it is impossible
to implement a failure detector of class � in these par-
tially synchronous systems if there is not a majority of
correct processes. The class � of failure detectors was
proposed by Aguilera et al. in [1], where it was shown
that it is the weakest failure detector that solves uniform
reliable broadcast. Since in [1] was also presented an
algorithm implementing � in an asynchronous system
with a majority of correct processes, our result identifies
a necessary and sufficient condition for � failure detec-
tors to be implemented in partially synchronous systems.

The rest of the paper is organized as follows. In Sec-
tion 2 we present the system model we will consider in
the paper. In Section 3 we show that the perpetual fail-
ure detector classes cannot be implemented in our mod-
els of partial synchrony. In Section 4 we show that it is
necessary a majority of correct processes to implement
a � failure detector in our models of partial synchrony.
Finally, Section 5 concludes the paper.

2. System Model

We consider a distributed system consisting of a fi-
nite set � of n processes, � = fp1; p2; : : : ; png, that
communicate only by sending and receiving messages.

1This follows directly from the fact that 3W is the weakest failure
detector for solving Consensus [2], and perpetual failure detectors are
stronger than 3W .

Every pair of processes is assumed to be connected by a
communication channel.

Processes can fail by crashing, that is, by prematurely
halting. Crashes are permanent, i.e., crashed processes
do not recover. In every run of the system we iden-
tify two complementary subsets of �: the subset of pro-
cesses that do not fail, denoted correct, and the subset
of processes that do fail, denoted crashed. We use f to
denote a known upper bound on the number of crashed
processes in the system in any run, which we assume is
always less than n, i.e., jcrashedj � f < n. We also
assume that failures are symmetric, i.e., a priori any pro-
cess in the system can crash.

2.1. Failure Detectors

As we said above, an unreliable failure detector is an
oracle that gives hints about crashed processes. In a sys-
tem with a failure detector, each process has access to a
local failure detector module, which monitors other pro-
cesses in the system and maintains a set of those that
it currently suspects to have crashed. A failure detector
module can make mistakes by not suspecting a crashed
process or by erroneously adding processes to its set of
suspects, i.e., it can suspect that a process p has crashed
even though p is still running. If it later finds that sus-
pecting p was a mistake, it can remove p from its set of
suspects. Thus, each module may repeatedly add and
remove processes from its set of suspected processes.
Furthermore, at any given time the failure detector mod-
ules at two different processes may have different sets of
suspects.

Chandra and Toueg characterized a class of failure
detectors by specifying the completeness and accuracy
properties that failure detectors in that class must sat-
isfy. Roughly speaking, the completeness property re-
quires that every process that actually crashes is eventu-
ally suspected, while the accuracy property restricts the
mistakes (i.e., false suspicions) that a failure detector
can make. Chandra and Toueg defined two complete-
ness and four accuracy properties in [3], which com-
bined gave rise to eight classes of failure detectors. Re-
garding completeness, they proposed the following two
properties:

� Strong Completeness. Eventually every process
that crashes is permanently suspected by every cor-
rect process.

� Weak Completeness. Eventually every process that
crashes is permanently suspected by some correct
process.

Completeness by itself is not very useful. For ex-
ample, strong completeness can be trivially satisfied by

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

forcing every process to permanently suspect every other
process in the system. Such a failure detector is clearly
useless, since it provides no information about failures.
To be useful, a failure detector must also satisfy some
accuracy, which restricts the mistakes that it can make.
Chandra and Toueg consider the following four accuracy
properties:

� Perpetual Strong Accuracy. No process is sus-
pected before it crashes.

� Perpetual Weak Accuracy. Some correct process is
never suspected.

� Eventual Strong Accuracy. There is a time after
which correct processes are not suspected by any
correct process.

� Eventual Weak Accuracy. There is a time after
which some correct process is never suspected by
any correct process.

Note that failure detectors with eventual accuracy
may suspect every process at one time or another, while
failure detectors with perpetual accuracy require that at
least one correct process is never suspected.

Combining one of the two completeness properties
with one of the four accuracy properties we obtain a
class of failure detectors. There are eight different
classes, which are presented in Figure 1. In this paper
we denote the four classes with perpetual accuracy as
perpetual, and the four classes with eventual accuracy
as eventual. As we said, Chandra and Toueg showed
in [3] that any of the failure detectors of Figure 1 can be
used to solve Consensus.

We now define the class � of failure detectors [1] in
terms of completeness and accuracy properties. A fail-
ure detector of class � must satisfy the following prop-
erties. (We say that a process p trusts another process q
at a given time t if p does not suspect q at time t.)

� �-completeness. There is a time after which
correct processes do not trust any process that
crashes2.

� �-accuracy. If there is a correct process then, at
every time, every process trusts at least one correct
process.

Note that a process may be trusted even if it has ac-
tually crashed. Moreover, the correct process trusted by
a process p is allowed to change over time (in fact, it
can change infinitely often), and it is not necessarily the
same as the correct process trusted by another process q.

2�-completeness is the same as strong completeness, since a trust
is just the complement of a suspicion.

As we said, � is the weakest class of failure detec-
tors that solves uniform reliable broadcast, and Aguil-
era et al. proposed in [1] an algorithm implementing
it in an asynchronous system with a majority of correct
processes.

2.2. Partial Synchrony

In order to define the level of synchrony of a sys-
tem we use two parameters, the transmission delay of
messages and the relative speeds of processes. In the
asynchronous model there are no upper bounds on one
or both of these parameters. Thus, to say that a system
is asynchronous is to make no timing assumptions. In
the synchronous model there are known upper bounds,
which we denote by� and �, respectively, on the trans-
mission delay of messages and the relative speeds of
processes. From the synchronous to the asynchronous
models there is a whole range of possible models of syn-
chrony. We call these partially synchronous models.

Dwork et al. [5] consider the following two models
of partial synchrony:

� M1: in every run of the system, there are upper
bounds� and � on the transmission delay of mes-
sages and the relative speeds of processes, respec-
tively, but these bounds are not known.

� M2: bounds exist and are known, but they hold
only after some unknown (but finite) time GST
(for Global Stabilization Time). Messages sent be-
fore GST can get lost.

A system that conforms to model M2 can be seen as
asynchronous up to GST , and as synchronous after
GST . Thus, M2 can be seen as an eventually syn-
chronous model. However, it is important to note that
the actual value of GST is not known and can vary from
run to run.

Dwork et al. [5] showed that Consensus can be solved
in both models M1 and M2 with a majority of correct
processes, i.e., when f < n=2. They proposed Consen-
sus algorithms for various fault models3 that work cor-
rectly regardless of the actual values of the bounds (in
the case of model M1), and the actual value of GST (in
the case of model M2).

In [3], Chandra and Toueg proposed a weaker model
of partial synchronyM3, which generalizes the two pre-
vious models M1 and M2:

� M3: bounds� and � exist, but they are not known
and they hold only after some unknown (but finite)
time GST .

3Model M2 becomes interesting if channels are unreliable before
GST . In such a case, algorithms must include techniques to mask the
loss of messages.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

Accuracy
Completeness Strong Weak Eventual Strong Eventual Weak

Strong Perfect Strong Eventually Perfect Eventually Strong
P S 3P 3S

Weak Quasi-Perfect Weak Eventually Quasi-Perfect Eventually Weak
Q W 3Q 3W

Figure 1. Eight classes of failure detectors defined in terms of completeness and accuracy.

A system that conforms to model M3 can be seen as
asynchronous up to GST , and as a system conforming
to model M1 after GST . Note also that every system
that conforms to models M1 or M2 also conforms to
model M3.

Chandra and Toueg showed how to implement a fail-
ure detector of class 3P in a system that conforms to
model M3. This shows that the four classes of even-
tual failure detectors can be implemented in such a sys-
tem model, since a 3P failure detector also belongs to
classes 3W , 3S, and 3Q. Concerning the perpetual
classes of failure detectors, i.e., P , Q, S, and W , they
were neither shown to be implementable nor impossible
to implement in models of partial synchrony.

In this paper, we prove the impossibility of imple-
menting such perpetual classes of failure detectors in
partially synchronous models of computation. When
proving impossibility results, it is convenient to consider
the strongest model of partial synchrony, because the
impossibility applies directly to the weaker ones. Hence,
we will consider in our proofs of impossibility models
M1 and M2. Furthermore, when considering model M1

we will assume that the bound on the relative speeds of
processes� is known, while only the bound on the trans-
mission delay of messages � is unknown4. Clearly, this
model is stronger than M1 and M3, and any negative
result will apply to these models as well. We will also
assume that communication channels are completely re-
liable under both models. As we will see, the impossi-
bility proofs are the same for both models, with minor
variations, which will be pointed out.

2.3. Any Implementation of a Perpetual Failure
Detector inM1 Requires a Majority of Cor-
rect Processes

There is a simple proof that any implementation in
M1 of a perpetual failure detector requires a majority
of correct processes. The proof basically shows that

4Actually, the results hold if at least one of the two bounds is un-
known. Intuitively, any slowness of the relative speeds of processes
can always be attributed to the slowness of the transmission delay of
messages and vice versa.

any implementation of a failure detector of class W in
the model of partial synchrony M1 (and thus in M3) re-
quires f < n=2.

The proof, which uses contradiction, goes as follows.
It is shown in [5] that the smallest number of processes
for which an r-resilient Consensus protocol exists in
the model of partial synchrony M1 is 2r + 1. In other
words, any protocol that solves Consensus in model M1

requires a majority of correct processes.

Let us assume now that we have an algorithm A that
implements a failure detector of class W in model M1

with f � n=2. In [3], Chandra and Toueg propose a
Consensus protocol based on W 5 that tolerates up to
n � 1 faulty processes in asynchronous systems with
n processes. In other words, Chandra-Toueg’s protocol
does not require a majority of correct processes. Clearly,
one could run this protocol on top of A and solve Con-
sensus in model M1 with f � n=2, which is a contra-
diction.

Note that this argument shows that W cannot be im-
plemented in the model of partial synchronyM1 without
a majority of correct processes, but it says nothing about
the possibility of implementing W with a majority of
correct processes, i.e., when f < n=2. In the follow-
ing section we show the impossibility even when there
is only one faulty process. Furthermore, the above proof
only applies to the models M1 and M3 of partial syn-
chrony, while the results of the following section also
apply to model M2.

3. Impossibility of Implementing Perpetual
Failure Detectors

In this section, we show that none of the perpetual
failure detector classes (P , Q, S, and W) can be imple-
mented in our models of partial synchrony.

5Actually, their protocol is based on S , but they also show that
failure detector classesW and S are equivalent.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

3.1. An Outline of the Result

From the relationship between failure detector
classes described in [3], it would be sufficient to show
the impossibility result for the failure detector class W ,
since W is the weakest of the four classes of failure de-
tectors satisfying perpetual accuracy. For the sake of the
presentation we prefer to start showing the result for the
failure detector classes satisfying perpetual strong accu-
racy (P and Q) and then show it for those satisfying
perpetual weak accuracy (S and W). In both cases, the
approach followed is assuming the existence of a failure
detector satisfying a completeness property, and show-
ing that the perpetual accuracy property is violated.

The principle used to prove the impossibility is to
consider different runs of the system – with and without
crashes – such that they look identical for some correct
processes up to certain time t. Hence, these processes
can take the same actions in both kinds of runs up to
t, in particular in what concerns the suspicion of other
processes. We show that by doing this, the required per-
petual accuracy is violated, and thus the failure detector
does not implement any of the four perpetual failure de-
tector classes defined in [3]. To construct a run without a
crash that looks identical up to time t to one with a crash,
we assume that the appropriate messages are delayed be-
yond t. This can happen if the value of the parameter�
or GST (depending on the synchrony model) is larger
than t. This is a valid assumption, since the values of
these parameters are unknown, and can be chosen freely
for a given run if required.

We first show the impossibility result for failure de-
tector classes P and Q. For that, one single incorrect
suspicion of a correct process by another correct pro-
cess is sufficient, since this violates the perpetual strong
accuracy property. Then, we extend the result to failure
detector classes S andW , by showing an admissible run
of the system in which all the correct processes are erro-
neously suspected at least once, thus violating perpetual
weak accuracy6.

3.2. Impossibility for P and Q (Perpetual Strong
Accuracy)

In this section, we show the impossibility result for
failure detector classes P and Q. Let � be a partially
synchronous distributed system that conforms to model
M1 or model M2, made up of n > 1 processes, such
that at least one of them is correct, i.e., at most f < n of
them may crash.

6Note that an algorithm implementing any given class D of failure
detectors must satisfy the properties that characterize D in all admis-
sible runs.

Theorem 1 Let FD� be a failure detector, imple-
mented on the system �, that satisfies the weak com-
pleteness property. Then FD� cannot satisfy the strong
accuracy property.

Proof: Let us consider a run R of � in which some
process p crashes at time 0. Since FD� satisfies the
weak completeness property, there is a time t after which
some correct process q permanently suspects p.

Let us consider now a run R 0 in which no process
crashes, but:

� All messages sent by p are received after time t.
This can happen if we assume that � > t, if �
conforms to M1, or GST > t, if � conforms to
M2.

� All processes except p behave exactly like in run R
up to time t.

Clearly, process q cannot distinguish run R from run
R0 up to time t as defined in R. Hence, at time t, q will
suspect p in R0, as it did in R, and the strong accuracy
property is not satisfied.

Corollary 1 There is no protocol that implements a fail-
ure detector of class Q in a partially synchronous dis-
tributed system that conforms to model M1 or model
M2.

Corollary 2 There is no protocol that implements a fail-
ure detector of class P in a partially synchronous dis-
tributed system that conforms to model M1 or model
M2.

Proof: Follows from Corollary 1 and the fact that Q
and P are equivalent [3].

3.3. Impossibility for S and W (Perpetual Weak
Accuracy)

In this section, we show the impossibility result for
failure detector classes S and W . We first give a
more intuitive preliminary result, which assumes runs
in which all processes except one crash. Then, we gen-
eralize the result for any number of crashes.

Let � be a partially synchronous distributed system
that conforms to model M1 or model M2, made up of
n > 1 processes, such that at least one of them is correct.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

3.3.1 Impossibility for f = n� 1

Theorem 2 Let FD� be a failure detector, imple-
mented on the system �, that satisfies the strong com-
pleteness property. Then, if f = n � 1, FD� cannot
satisfy the weak accuracy property.

Proof: Let us consider n runs Ri, i = 1; : : : ; n, of �
in which all processes except pi crash at time 0. Since
FD� satisfies the strong completeness property, there is
some time ti at which pi suspects all other processes.
Let us define t = maxiftig.

Let us consider now a run R in which no process
crashes, but:

� All messages sent are received after time t. This
can happen if we assume that� > t, if� conforms
to M1, or GST > t, if � conforms to M2.

� Each process pi, i = 1; : : : ; n, behaves exactly like
in run Ri up to time t.

Clearly, a process pi, i = 1; : : : ; n, cannot distin-
guish run R from run Ri up to time t. Hence, at time
ti � t it will suspect the rest of processes in R, as it
did in Ri. Since this is true for every process in the
system, in run R all correct processes are suspected at
some time by the rest of correct processes, and the weak
accuracy property is not satisfied.

3.3.2 Impossibility for any f < n

Theorem 3 Let FD� be a failure detector, imple-
mented on the system �, that satisfies the strong com-
pleteness property. Then FD� cannot satisfy the weak
accuracy property.

Proof: Let us consider a run R1 of � in which only
process p1 crashes, doing it at time t0 = 0. Since FD�

satisfies the strong completeness property, there is some
time t1 at which all other processes permanently suspect
p1 in R1.

Let us consider now a run R2 of � in which only pro-
cess p2 crashes, doing it at the time t1 defined in R1,
and all messages sent by p1 are received after t1 (this
can happen if we assume that � > t1, if � conforms
to M1, or GST > t1, if � conforms to M2). Also in
R2, all processes except p1 behave exactly like in run
R1 up to time t1. Clearly, all correct processes, except
p1, cannot distinguish run R2 from run R1 up to time t1.
Hence, at time t1 they will suspect p1 in R2, as they did
in R1. Finally, since FD� satisfies the strong complete-
ness property, there is some time t2 � t1 at which all
other processes permanently suspect p2 in R2.

Generalizing this reasoning, we obtain n runs R i,
i = 1; : : : ; n of � as follows. In run Ri only process
pi crashes, doing it at time ti�1, defined in Ri�1, and
for each process pk, k = 1; : : : ; i� 1, all messages sent
by pk after tk�1 are received after tk, with t0 = 0 (this
can happen if we assume that � > ti�1, if � conforms
to M1, or GST > ti�1, if � conforms to M2). Also in
Ri, for each process pk, k = 1; : : : ; i� 1, all processes
except pk behave exactly like in run Rk up to time tk.
Clearly, for each process pk, k = 1; : : : ; i � 1, all cor-
rect processes except pk cannot distinguish run Ri from
run Rk up to time tk. Hence, at time tk they will sus-
pect pk in Ri, as they did in Rk. Finally, since FD�

satisfies the strong completeness property, there is some
time ti � ti�1 at which all other processes permanently
suspect pi in Ri.

Let us now consider a run R of� in which no process
crashes, but:

� All messages sent by pn after time tn�1 as defined
inRn�1 are received after time tn as defined in Rn.
This can happen if we assume that � > tn, if �
conforms to M1, or GST > tn, if � conforms to
M2.

� For each process pi, i = 1; : : : ; n, all processes
except pi behave exactly like in run Ri up to time
ti.

Clearly, for each process pi, i = 1; : : : ; n, all
processes except pi cannot distinguish run R from run
Ri up to time ti. Hence, at time ti they will suspect
pi in R, as they did in Ri. Since this is true for every
process pi, i = 1; : : : ; n in the system, in run R all
correct processes are suspected at some time by the rest
of correct processes, and the weak accuracy property is
not satisfied.

Corollary 3 There is no protocol that implements a fail-
ure detector of class S in a partially synchronous dis-
tributed system that conforms to model M1 or model
M2.

Corollary 4 There is no protocol that implements a fail-
ure detector of class W in a partially synchronous dis-
tributed system that conforms to model M1 or model
M2.

Proof: Follows from Corollary 3 and the fact that S and
W are equivalent [3].

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

4. Impossibility of Implementing � without
a Majority of Correct Processes

In this section, we show that the failure detector �,
proposed by Aguilera et al. in [1], cannot be imple-
mented in the models of partial synchrony M1 and M2

without a majority of correct processes.

Theorem 4 Let � be a partially synchronous dis-
tributed system that conforms to model M1 or model
M2, made up of n > 1 processes. Let FD� be a failure
detector, implemented on the system �, that satisfies the
�-completeness property. Then, if f � dn=2e, FD�

cannot satisfy the �-accuracy property.

Proof: Let us consider a run R of � in which processes
p1; p2; : : : ; pdn=2e crash at time 0. Since FD� satis-
fies the �-completeness property, there is some time t
at which pn permanently suspects all these processes.

Let us now consider a run R 0 in which processes
pdn=2e+1; : : : ; pn crash at time t+1, and:

� All messages sent by processes p1; p2; : : : ; pdn=2e
are received after time t. This can happen if we
assume that � > t, if � conforms to M1, or
GST > t, if � conforms to M2.

� Each process pdn=2e+1; : : : ; pn behaves exactly
like in run R up to time t.

Clearly, process pn cannot distinguish run R0 from
run R up to time t. Hence, at time t it will suspect all
the processes p1; p2; : : : ; pdn=2e which are the correct
processes of the run R0. Hence, in run R0 all correct
processes are suspected at time t by process pn, and
the �-accuracy property is not satisfied, since there is a
time at which some process does not trust any correct
process.

Corollary 5 There is no protocol that implements a fail-
ure detector of class � in a partially synchronous dis-
tributed system that conforms to modelM1 or modelM2

without a majority of correct processes.

5. Conclusions

In this paper we have shown the impossibility of im-
plementing several classes of unreliable failure detectors
in partially synchronous systems. The models of par-
tially synchronous systems we consider are at least as
strong as those proposed in [3, 5], and hence our results
apply to those as well. We show that no perpetual fail-
ure detector from those proposed by Chandra and Toueg
in [3] can be implemented, and that to implement a fail-
ure detector of class � a majority of correct processes is
required.

Acknowledgments

We are grateful to André Schiper for his valuable
comments on earlier drafts of this paper. We also thank
Sam Toueg for suggesting the indirect proof of impossi-
bility presented in Section 2.3.

References

[1] M. Aguilera, S. Toueg, and B. Deianov. Revisiting the
weakest failure detector for uniform reliable broadcast. In
Proceedings of the 13th International Symposium on DIs-
tributed Computing (DISC, formerly WDAG), pages 19–
33. LNCS, Springer-Verlag, September 1999.

[2] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weak-
est failure detector for solving consensus. Journal of the
ACM, 43(4):685–722, July 1996.

[3] T. D. Chandra and S. Toueg. Unreliable failure detec-
tors for reliable distributed systems. Journal of the ACM,
43(2):225–267, March 1996.

[4] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal
synchronism needed for distributed consensus. Journal of
the ACM, 34(1):77–98, January 1987.

[5] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288–323, April 1988.

[6] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of
the ACM, 32(2):374–382, April 1985.

[7] M. Larrea, S. Arévalo, and A. Fernández. Efficient
algorithms to implement unreliable failure detectors in
partially synchronous systems. In Proceedings of the
13th International Symposium on DIstributed Comput-
ing (DISC’99), pages 34–48. LNCS, Springer-Verlag,
September 1999.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

