
Source Routing and Scheduling in Packet Networks �

Matthew Andrews y Antonio Fernández z Ashish Goel x Lisa Zhang {

Abstract

We study routing and scheduling in packet-switched net-
works. We assume an adversary that controls the injection
time, source, and destination for each packet injected. A set
of paths for these packets is admissible if no link in the net-
work is overloaded. We present the first on-line routing al-
gorithm that finds a set of admissible paths whenever this is
feasible. Our algorithm calculates a path for each packet
as soon as it is injected at its source using a simple shortest
path computation. The length of a link reflects its current
congestion. We also show how our algorithm can be imple-
mented under today’s Internet routing paradigms.

When the paths are known (either given by the adversary
or computed as above) our goal is to schedule the packets
along the given paths so that the packets experience small
end-to-end delays. The best previous delay bounds for de-
terministic and distributed scheduling protocols were expo-
nential in the path length. In this paper we present the first
deterministic and distributed scheduling protocol that guar-
antees a polynomial end-to-end delay for every packet.

Finally, we discuss the effects of combining routing with
scheduling. We first show that some unstable scheduling
protocols remain unstable no matter how the paths are cho-
sen. However, the freedom to choose paths can make a dif-
ference. For example, we show that a ring with parallel
links is stable for all greedy scheduling protocols if paths
are chosen intelligently, whereas this is not the case if the
adversary specifies the paths.

�Partially supported by DIMACS funding.
yBell Laboratories. andrews@research.bell-labs.com.
zGSyC, ESCET, Universidad Rey Juan Carlos, Spain.

anto@gsyc.escet.urjc.es.
xDepartment of Computer Science, University of Southern California.

agoel@cs.usc.edu.
{Bell Laboratories. ylz@research.bell-labs.com.

1 Introduction

Two of the most important problems in the control of
packet-switched networks are routing and scheduling. The
goal of routing is to assign a path to a packet from its source
to its destination. The goal of scheduling is to deal with the
contention that occurs when two or more packets wish to
cross a link simultaneously. Each link must have a sched-
uler that resolves this contention by deciding which packet
to advance.

The scheduling problem typically assumes that the paths
of the packets are given as part of the input. The goal is then
to schedule the packets along their paths in such a way that
they all reach their destinations in a short time. Much re-
cent work has focused on the Adversarial Queueing Model,
e.g. [7, 2, 8]. We follow their convention and assume that
all packets are unit size and each link processes one packet
per time step. In this Adversarial Queueing Model, the ad-
versary chooses the injection time, source, destination, and
route for each packet injected. A sequence of injections is
called (w; r)-admissible for a window size w and injection
rate r < 1, if in any time interval of T � w the total
number of packets injected into the network whose paths
pass through any link e is at most Tr. These paths are
also called (w; r)-admissible. Previous work has examined
the performance of a number of simple scheduling proto-
cols in this model. A packet scheduling protocol is said to
be universally stable if it guarantees bounded buffer sizes
and packet transmission delays for any (w; r)-admissible in-
jections. In [2] it was proved that several natural proto-
cols (Longest-In-System, Shortest-In-System, Furthest-To-
Go) are universally stable, whereas several others (First-In-
First-Out, Last-In-First-Out, Nearest-To-Go) are not.

In this paper we study both routing and scheduling. The
adversary no longer specifies the route of each packet; it
merely specifies the source and destination. However, we
are guaranteed that (w; r)-admissible paths for the injec-
tions do exist. The problem is now two-fold. We first need
to find some (W;R)-admissible paths, possibly for a differ-
ent window size W and a different R < 1. These admis-
sible paths combined with a universally stable scheduling
scheme, such as the ones in [2] or the one presented in Sec-
tion 3 of this paper, result in a universally stable protocol for

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

routing and scheduling.

1.1 Source Routing for Stability

Our result. In Section 2 of the paper we present the first
online algorithm for assigning admissible routes to packets.
If the adversary can assign (w; r)-admissible routes, then
our algorithm finds a set of (W;R)-admissible routes where
R 2 (r; 1) is of our choice and W � w is determined by
the choice of R. Hence, if the parameter of merit is the win-
dow size w, then our algorithm is a W=w-approximation al-
gorithm (modulo a small increase in the rate). Moreover,
our algorithm is online in that it assigns routes to packets as
soon as they are injected into the network. Hence it can also
be regarded as a W=w-competitive algorithm for this prob-
lem. This is the first approximation algorithm/competitive
algorithm for this problem. Once the routes are chosen, we
can use any “good” scheduling protocol in the Adversarial
Queueing Model.

Our algorithm is based on the "-approximation algo-
rithm for fractional maximum multicommodity concurrent
flow given by Garg and Könemann [10], which in turn
builds upon the work of Plotkin, Shmoys, and Tardos [13]
and Young [18]. In the maximum multicommodity con-
current flow problem, the demands for each commodity
remain constant as the algorithm progresses. In our set-
ting, the demands between source-destination pairs corre-
spond to the packets injected by the adversary, which can
change over time. Even though the algorithm of Garg and
Könemann [10] is an offline algorithm that assigns frac-
tional paths to a fixed set of commodities, in our setting we
are able to convert it into an online algorithm that assigns an
integral path to each packet as soon as it is injected.

Implementation under Internet routing paradigms. At
a high level, our algorithm works as follows. Each link
maintains a measure of congestion that represents how many
packets have been routed through it in the recent past. Pack-
ets are then routed on shortest paths with respect to this
congestion measure. Hence we need a mechanism for dis-
tributingcongestion information from the links to the source
nodes. We also need a mechanism by which a source node
can inform a link whenever it routes a packet through that
link.

The first requirement could be satisfied by something
akin to the OSPF (Open Shortest Path First) link state flood-
ing protocol. (See e.g. [11].) This is a protocol that is used
for flooding link state information to the nodes in a network
so that packets may be routed along shortest paths. The
second requirement may be satisfied by the MPLS (Multi-
Protocol Label Switching) protocol that is gaining increas-
ing acceptance in the Internet. (See e.g. [15].) With this pro-
tocol a source node can compute an explicit route to each

destination and then distribute a label for the route to each
of the links that comprise the route. In combination with this
label distribution the source can also specify how much traf-
fic it is going to send on the route.

In Section 2 we first assume that this control informa-
tion is transmitted instantaneously and does not contribute
to the congestion in the network. We then consider a
model in which the control information is transmitted in-
band through the network and must contend with the data
traffic.

Relation to previous work. Routing and scheduling as a
combined problem has been studied in the past. For ex-
ample, Aiello et al. presented a distributed algorithm [1]
motivated by the Awerbuch-Leighton multicommodity flow
algorithm [5]. In [9] Gamarnik gave a solution based on
an approximation algorithm for static routing. However,
both these algorithms require a dependence between how
a packet is routed and how it is scheduled. Hence, their
routing schemes only work in association with their spe-
cific scheduling schemes, but not with generic scheduling
algorithms. Neither routing algorithm can be used to pro-
vide packets with admissible paths at injection time. Us-
ing networking terminology, these routing algorithms cor-
respond to active routing [17], where intermediate routers
need to actively participate in determining routes for each
individual packet. In contrast, our algorithm corresponds to
source routingwhere the entire path of a packet is known at
the source.

1.2 Deterministic Distributed Scheduling with
Polynomial Delays

In Section 3 of the paper we study the scheduling prob-
lem in isolation assuming that (w; r)-admissible paths are
given. In recent years, a number of scheduling algorithms
have been proposed that guarantee network stability, i.e. the
number of packets in the network remains bounded and the
end-to-end delay experienced by packets remains bounded.
For example, the Longest-In-System protocol that always
gives priority to the packet injected into the system earliest,
was shown in [2] to guarantee a delay bound of O(w=(1 �
r)dmax), where dmax is the maximum length of a path as-
signed to any packet. Note however, that this bound is ex-
ponential in dmax. It has been an open problem whether
or not any deterministic, distributed scheduling protocol
has a polynomial delay bound in the Adversarial Queueing
Model. Indeed, [2] remarked that “it is of considerable in-
terest to determine whether such a protocol exists”.

A randomized protocol based on Longest-In-System
can guarantee that each packet experiences a delay of
poly(w; 1=(1 � r); dmax; logm) with high probability [2],
where m is the number of links in the network. In essence,

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

for most of the time the protocol is successful and keeps
all delays small. However, even if the failure probability is
small, if the algorithm is run for an extended period of time
then the algorithm is likely to make some random choices
that are bad. This causes packets to violate the delay bound.
Moreover, if one packet violates the delay bound then other
packets injected along the same path at similar times are also
likely to violate the delay bound. Hence, all of the packets
that make up a single file transfer could be excessively de-
layed. Although this randomized protocol can be derandom-
ized in a centralized manner it seems hard to convert it into a
deterministic, distributedprotocol. This is because the “suc-
cess condition” involves packets injected at multiple source
nodes and hence it cannot be verified locally.

Our result. In Section 3 we present the first determinis-
tic, distributed scheduling protocol with a polynomial delay
bound. It guarantees that all packets reach their destination
within poly(w; 1=(1 � r);m) steps of their injection. We
start by presenting a randomized protocol in which the “suc-
cess condition” can be verified at the source nodes indepen-
dently. This allows us to derandomize the protocol in a dis-
tributed fashion.

1.3 The Effects of Combining Source Routing
with Scheduling

In the final part of the paper we consider the following
question: Is it possible for unstable scheduling protocols
to become stable if paths can be chosen by a routing algo-
rithm as opposed to being dictated by the adversary? We
first present a network and a sequence of packet injections
such that regardless of how the routes for these packets are
chosen, many greedy protocols (including FIFO) remain un-
stable. Thus, we cannot hope to achieve stabilityusing FIFO
even if we have the freedom to choose routes. However,
we also present an example in which the ability to select the
routes does make a difference. We show that in a “ring” with
multiple parallel links, if we are allowed to choose the routes
intelligently then we can ensure that all greedy scheduling
protocols are stable. However, if the adversary dictates the
routes then many scheduling protocols (including FIFO) are
unstable.

1.4 Other Related Work

Much traditional work on routing focuses on the prob-
lem of routing flows online, e.g. [3, 4]. Each flow requests
a bandwidth from a source to a destination and we must
choose a path for each accepted flow without violating any
link capacity. The goal is to maximize the on-line accep-
tance rate. However, this work does not consider packet-
level behavior.

The problem of choosing routes for a fixed set of pack-
ets was studied by Srinivasan and Teo [16] and Bertsimas
and Gamarnik [6]. For example, [16] presents an algorithm
that minimizes the congestion and dilation of the routes
up to a constant factor. This result complemented the pa-
per of Leighton, Maggs and Rao [12] which showed that
packets could be scheduled along a set of paths in time
O(congestion+dilation).

2 Source Routing for Stability

For convenience we use the following weaker notion of
admissibilityin this section. We say that a set of packet paths
is weakly (w; r)-admissible if we can partition time into
windows of lengthw such that for each window in the parti-
tion and each link e, the number of paths that pass through e
and correspond to packets injected during the window is at
most wr. However, this distinction is not important due to
Lemma 1. Moreover, all of the delay bounds that have been
derived in the past for the Adversarial Queueing Model ap-
ply to weakly (w; r)-admissible paths.

Lemma 1 If a set of paths is (w; r)-admissible then it is
also weakly (w; r)-admissible. Conversely, weak (w; r)-
admissibility implies (w 0; r0)-admissibility for somew0 � w
and r0 2 [r; 1).

Proof: Suppose the injections are weakly (w; r)-
admissible. We show that they are (w0; r0)-admissible
for r0 = (1+ r)=2 and w0 = 4wr=(1� r). For any T � w0,
let T be in the range of [nw; (n + 1)w) where n is an
integer at least 4r=(1 � r). Due to weak admissibility and
our choices of n, T and r0, the number of injections during
T steps for any link e is at most,

(n+ 2)rw � nw(1 + r)=2 � Tr0:

The other direction is trivial.

We assume an adversary that injects weakly (w; r)-
admissible packets into the network1. Our aim is to choose
weakly (W;R)-admissible routes for these packets where
R 2 (r; 1) is of our choice and W � w is determined by
the choice of R.

2.1 The Basic Routing Protocol

We first assume that control information is communi-
cated instantaneously. Whenever a source node chooses a
route for a packet, this information is instantaneously trans-
mitted to all the links on the route. Whenever the conges-
tion on a link changes, this fact is instantaneously transmit-
ted to all the source nodes. Later on we relax these assump-
tions. As mentioned in the Introduction, the algorithm is

1In fact, as will be seen later, we only need to assume that the adversary
can choose fractional paths that are weakly (w;r)-admissible.

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

Find routes.
1 Initialize c(e) = �, 8e
2 for the ith window, i = 1; : : : ; t
3 for each packet injected during ith window
4 p least congested route under c (i.e. shortest path with respect to c)
5 c(e) c(e)(1 + �=w), 8e 2 p

Figure 1. Procedure to find routes for packets injected during one phase.

based on the Garg-Könemann offline approximation algo-
rithm for fractional maximum concurrent flow. However, in
our setting we can convert it into an online algorithm that
chooses integral paths for the packets.

Protocol. We route every packet injected along the path
whose total congestion is the smallest under the current con-
gestion function c(�), i.e. we route along shortest paths with
respect to c(�). Initially, the congestion along every link is
set to � where � is defined in (2). For every link e along the
chosen route, its congestion c(e) is updated to c(e)(1+�=w)
where � is defined in (1). We reset the congestion of every
link to its initial value of � at the beginning of each phase. A
phase terminates in twindows ofw steps, where t is an inte-
ger defined in (3). Figure 1 illustrates the procedure for one
phase. The values of �, � and t are defined as follows. Let
m be the number of links in the network. For any R 2 (r; 1)
of our choice, let

� = 1�
� r
R

�1=3
(1)

� =

�
1� r�

m

�1=r�

(2)

t =

�
1� r�

r�
ln

1� r�

m�

�
+ 1 (3)

Our objective is to show,

Theorem 2 For all packets injected during one phase, at
most twR of their routes chosen by our procedure go
through the same link. In other words these routes are
weakly (tw;R)-admissible.

Analysis. To prove Theorem 2 let us examine an integer
program formulation for routing the set of packets injected
during a window ofw time steps. Let Pj be the set of possi-
ble routes for the jth packet, and let variable xj(p) 2 f0; 1g
indicate whether or not route p 2 Pj is chosen for packet j.
The following linear relaxation of the integer program (LP)
has an optimal solution� � 1 since the injections are (w; r)-

admissible. We present both the primal and the dual.

Primal
max�

s:t: P
p2Pj

xj(p) � � 8jP
j

P
p:e2p;p2Pj

xj(p) � rw 8e
xj(p) � 0 8j; 8p 2 Pj

Dual
min

P
e rw � c(e)

s:t: P
e2p c(e) � z(j) 8j; 8p 2 PjP

j z(j) � 1

c(e) � 0 8e
z(j) � 0 8j

For any non-negative congestion function c(�), let D =P
e c(e) be the total congestion of all links. For packet j

let qj be the least congested path in terms of c. We use
� =

P
j

P
e2qj

c(e) to represent the total congestion of
these least congested paths. It can be shown that the dual
is equivalent to,

min
c

rw �D=�:
The congestion found at the end of window i by our protocol
(see Figure 1) defines a valid solution to this reformulated
dual for window i. We exploit this connection to prove The-
orem 2. The key here is to bound the total link congestion
since the link congestion increases only when a path goes
through it. In particular, the following three lemmas show
that the total link congestion is no more than 1 at the end of
a phase. Let ci(e), Di and �i represent the values of c(e),
D and � at the end of the ith window.

Lemma 3 Di=�i � 1=rw for 1 � i � t.

Proof: Since the injections are (w; r)-admissible, the pri-
mal LP for window i has max� � 1. Since the congestion
ci found by our protocol defines a dual solution, our lemma
follows from duality.

Lemma 4 Di � Di�1

1�r� .

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

Find routes.
1 Initialize c(e) = �, 8e
2 for ith window, i = 1; : : : ; t
3 for each packet injected during ith window
4 p least congested route under c
5 c(e) c(e)(1 +Ni(e) � �=w).

Figure 2. Procedure to find routes for packets injected during one phase with fewer updates.

Proof: It suffices to show Di � Di�1 + �i � �=w since
Di=�i � 1=rw by Lemma 3. Let cij be the congestion
function after routing the jth packet injected during the ith
window and letDij be defined in terms of cij. Suppose path
pj is chosen for the jth packet injected during the ith win-
dow. By definition we have,

Dij =
X
e

cij(e)

=
X
e=2pj

ci;j�1(e) +
X
e2pj

ci;j�1(e)(1 + �=w)

= Di;j�1 +
X
e2pj

ci;j�1(e) � �=w:

Now we repeatedly apply the recurrence above. We also ob-
serve that the congestion function c only increases. Hence,
if qj is the least congested path for j under ci thenP

e2pj
ci;j�1(e) is necessarily no more than

P
e2qj

ci(e).
(We emphasize that pj and qj may be two different paths.
The path pj is least congested with respect to ci;j�1 and qj
is least congested with respect to ci.) We have,

Di = Di�1 +
X
j

X
e2pj

ci;j�1(e)�=w

� Di�1 + �i � �=w:

Lemma 5 Dt � 1.

Proof: By definition D0 = m� where m is the number of
links in the network. By applying Lemma 4, we have,

Dt � m�

(1� r�)t

=
m�

1� r�

�
1 +

r�

1� r�

�t�1

� m�

1� r�
e
r�(t�1)
1�r�

� 1:

The second inequality follows from 1 + x � ex for x � 0.
The last inequality follows from the definition of t in (3).

We are now ready to prove Theorem 2.
Proof of Theorem 2: Consider any link e. For every w
paths routed though e, the congestion of e is increased by
a factor at least 1 + �. Initially, c0(e) = �. Since Dt � 1,
ct(e) � 1. Hence, the total number of paths that are routed
through e in a phase is at most w log1+� 1=�. It suffices to
show that this quantity is no more than wtR.

w log1+� 1=�

wtR
� ln 1=�

ln(1 + �)
� r�

1� r�
� 1

ln 1�r�
m�

� 1
R

=
r

R
� �

ln(1 + �)(1� r�)2

� r

R
� (1� �)�3

= 1:

The first inequality and the first equality follow from the
definitions of t and � respectively. The second inequality
follows from the fact that r < 1 and ln(1+�) � �� �2=2.
The last equality follows from the definition of �. Our proof
is complete.

2.2 Routing with Less Frequent Updates

In this section we show that Theorem 2 still holds even if
the congestion function c is updated less frequently. In par-
ticular, we only update the congestion at the end of each win-
dow, not for each packet injection. Hence the source nodes
only need to communicate with the links at the end of each
window. For this new protocol we redefine � to be

1

m

�
1�

� r
R

�1=3�
: (4)

Suppose Ni(e) packets are routed through link e during the
ith window, then we update c(e) to c(e)(1 + Ni(e) � �=w).
See Figure 2.

We prove that Theorem 2 remains true. We first show that
Lemma 4 still holds. As before, we show Di � Di�1+�i �
�=w. For any packet j injected during the ith window, let
pj be the path chosen for j.

Di =
X
e

ci(e)

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

=
X
e

ci�1(e)(1 +Ni(e) � �=w)

= Di�1 +
X
e

ci�1(e)Ni(e) � �=w

= Di�1 +
X
j

X
e2pj

ci�1(e) � �=w

� Di�1 + �i � �=w

Hence Dt � 1. Now, for every mw paths routed through e,
the congestion on e is increased by a factor at least 1+m�.
Therefore the congestion on any link at the end of a phase is
at most,

mw log1+m� 1=�

wtR
� ln 1=�

ln(1 +m�)
� r�

1� r�
� 1

ln 1�r�
m�

� 1
R

=
r

R
� m�

ln(1 +m�)(1 � r�)2

� r

R
� (1�m�)�3

= 1;

with the revised definition of � in (4).

2.3 Implementation Using In-band Signaling

In the previous sections we assumed that sources can
communicate with the links on their chosen routes via in-
stantaneous setup messages. In turn, we also assumed that
the links can instantaneously broadcast their congestion to
the sources. In this section, we first extend our result in
Section 2.2 to the case where each of these communications
takes � time steps. We then give an upper bound on � for
which the communication may be carried out in-band using
packets transmitted through the network.

Assume without loss of generality that w > 2� (since
admissibility for a small window implies admissibility for
a large window). Each source only updates the link con-
gestion at the end of every window. Since the congestion
does not change during a window, all the packets for a given
source-destination pair (s; t) are routed along the same path
p. At the end of window [w(i � 1); wi) a control packet is
sent along path p that contains the number of (s; t)-packets
injected during window [w(i � 1); wi). This packet takes
time � to traverse the path. Hence, at timewi+ � , each link
can update its congestion due to all the packets injected dur-
ing [w(i� 1); wi). Then by time wi + 2� � w(i + 1) this
new congestion can be distributed via control packets to all
the sources.

Note that at the end of window [wi;w(i + 1)), every
link has updated its congestion according to the injections in
window [w(i� 1); wi). The exact form of this update is as
follows. Let Ni(e) be the number of packets routed through
e that were injected during [w(i � 1); wi). Let ci(e) be the

congestion of e at the end of window [w(i � 1); wi). We
update ci(e) by,

ci+1(e) = ci(e) + ci�1(e)Ni(e) � �=w;
for

� =
1

2m

�
1�

� r
R

�1=3�
: (5)

To show that Theorem 2 remains true, we observe,

Di+1 =
X
e

ci+1(e)

=
X
e

ci(e) + ci�1Ni(e) � �=w

= Di +
X
e

ci�1(e)Ni(e) � �=w

= Di +
X
j

X
e2pj

ci�1(e) � �=w

� Di + �i;i+1 � �=w:
Here�i;i+1 is the sum of the congestion along the paths cho-
sen for packets injected during [w(i � 1); wi) with respect
to ci+1(e). This is sufficient to imply Dt � 1. Note also
that for every 2mw (non-control) packets routed through an
link, the congestion function of the link increases by at least
a factor 1 + 2m�. The remainder of the analysis follows
through for the revised definition of � in (5).

To ensure that the transmission time of the control pack-
ets is upper bounded, the scheduling protocol always gives
priority to control packets. Observe that a total of at most
n2 + mn control packets can be sent out during one win-
dow, wherem is the number of links and n is the number of
nodes in the network. If we let � = n3+mn2, the transmis-
sion of a control packet takes at most � time steps. Without
loss of generality we assume thatw � 2� andw(1�r)=2 �
n2+mn. The latter condition ensures that together with the
control packets the injections are (w; (1+r)=2)-admissible.

3 A Scheduling Protocol with Polynomial De-
lay Bounds

In this section we assume that (w; r)-admissible paths are
known (either given by the adversary or computed as in Sec-
tion 2). Hence, in order to achieve network stability we can
use any of the scheduling protocols that are known to be
stable for Adversarial Queueing. However, the best previ-
ous delay bounds known for distributed,deterministic proto-
cols are exponential in the maximum packet path length. In
this section we present a deterministic, distributed schedul-
ing protocol with a polynomial delay bound.

In [2] a randomized protocol was presented for which the
delay bound is O(dmax

" logm) with high probability, where

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

" = 1 � r. This protocol is hard to derandomize be-
cause its success depends on a condition that can only be
checked globally. In this section we first present a new ran-
domized protocol and then show how to derandomize it in
a distributed manner. The key idea of this protocol is that
the conditions that determine the “success” of the protocol
only depend on packets that share the same initial link. This
allows derandomization in a distributed manner.

Our new randomized protocol is defined in terms of two
parameters M and T which are defined below. We partition
time into intervals of lengthM , which we call M -intervals.
We save up all packets that are injected into the network dur-
ing each M -interval and then schedule these packets during
the nextM -interval. We give each packet a deadline for ev-
ery link on its path. Our goal is to make sure that no more
than T packets have a deadline for link e during any time in-
terval of length T . If this condition holds then we are able
to bound the end-to-end delay experienced by a packet.

Randomized protocol. For a packet p injected during an
M -interval [(
�1)M;
M) for an integral
, let us suppose
its path is e0; e1; : : : ; edp . We define a deadline �pk for p at
link ek as follows. We choose the initial deadline �p0 uni-
formly at random from [
M + T; (
 +1)M � dmaxT). We
then define the remaining deadlines inductively by �pk+1 =
�pk+T . Our protocol always gives priority to the packet with
the smallest deadline at each link. We define M and T such
that,

T =
36m

"3
log(2Mm2); (6)

M � max

�
1� "=2

"=6
(dmax + 1)T;w

�
: (7)

These properties are satisfied for,

M = O

�
dmaxm

"4
log

m

"
+w

�
:

When a packet meets its deadlines, it reaches its destination
within 2M steps.

Analysis. Our objective is to show that all packets injected
during a given M -interval meet all their deadlines with a
constant probability. Lemma 6 gives a sufficient condition
for all deadlines to be met. For any packet p and link e let
Xp;e

[t;t+T) = 1 if e is the kth link on packet p’s path and �pk
lies in the time interval [t; t + T). Let Xp;e

[t;t+T) = 0 other-
wise.

Lemma 6 If
P

pX
p;e
[t;t+T) � T for all t and all links e, then

all packets meet all their deadlines.

Proof: Suppose not. Let p be a packet that misses its kth
deadline �pk and suppose that no deadline earlier than �pk is

missed. Then p has arrived at its kth link ek by time �pk �T .
(This is true regardless of whether ek is the initial link of p
or not.) By our assumption that �pk is the first deadline that is
missed, all the packets with deadlines for ek that are earlier
than �pk � T + 1 meet those deadlines. Therefore, the only
packets that block packet p in the interval [�pk � T + 1; �pk]
have deadlines in the interval [�pk � T + 1; �pk]. By the as-
sumption in the statement of the lemma there are at most
T � 1 such packets (excluding p). Therefore packet p is
served by link ek at time �pk or earlier. This is a contradic-
tion.

Given Lemma 6 we show,

Lemma 7 Consider packets injected during anM -interval,
[(
�1)M;
M). The number of deadlines from these pack-
ets on any link e during any interval [t; t+ T) is at most T
with a constant probability.

Proof: We use a Chernoff bound to prove the number of
deadlines is small. Let S
e0;e be the set of packets injected
into the network during the interval [(
 � 1)M;
M) that
have e0 as their initial link and that have link e on their path.
The expected number of deadlines is,

E

2
4 X
p2S

e0;e

Xp;e
[t;t+T)

3
5 � jS
e0;ej

M � (dmax + 1)T
T:

When jS
e0;ej is large, the expectation is large and the argu-
ment is straightforward. However, for small jS
e0;ej a direct
application of the Chernoff bound may not suffice. To rec-
tify this, let us define a new quantity,

�
e0;e =
M

M � (dmax + 1)T
maxfjS
e0;ej=M; "=3mg:

The quantity � has the following properties.

1. �
e0;e � "=3m;

2.
P

e0
�
e0;e � M

M�(dmax+1)T ((1 � ") + m"=3m) �
1�"=2
1�2"=3(1� 2"=3) � 1� "=2:

The second property follows from the requirement of M
in (7) and the admissibility of the paths. Our lemma follows
if we show that the following holds with constant probabil-
ity,

X
p2S

e0;e

Xp;e

[t;t+T) � (1 + "=2)�

e0;eT; 8e0; e and 8[t; t+ T): (8)

If the above holds, the number of deadlines on link e in the
interval [t; t+T) is at most (1+ "=2)

P
e0
�
e0;eT , which is

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

less than T due to the second property of �. We have,

Pr

2
4 X
p2S

e0;e

Xp;e
[t;t+T) > (1 + "=2)�
e0 ;eT

3
5

�
Q

pE[(1 + "=2)
Xp;e

[t;t+T)]

(1 + "=2)(1+"=2)�

e0;e

T
(9)

� exp(�"2�
e0;eT=12)
� 1

2Mm2
: (10)

The first inequality is due to a Chernoff bound. The second
inequalityholds sinceE[

P
p2S

e0;e
Xp;e

[t;t+T)]� �
e0;eT . The
third inequality follows from the definition of T in (6) and
the fact that �
e0;e � "=3m. By taking a union bound over
all links e0, e and all intervals [t; t+T) � [
M; (
+1)M),
we have that the number of deadlines from all packets on e
during [t; t+ T) is at most T with probability at least 1=2.

Remarks. To prove Lemma 7 a condition weaker than (8)
would be sufficient. It would suffice to show that the num-
ber of deadlines on any e during any [t; t + T) is at most
(1+"=2)

P
e0
�
e0;eT . Indeed, this would even allow T and

M to be a factor of m smaller, as in [2]. However, such a
weaker condition only allows derandomization in a central-
ized manner.

We emphasize that the condition (8) depends only on sets
of packets that are injected into one particular initial link.
Therefore we can choose the deadlines for a packet simply
by considering the other packets that are injected at the same
initial link. Hence, we can carry out a derandomization inde-
pendently at each initial link and obtain a distributed, deter-
ministic protocol. This is in contrast to the randomized pro-
tocol of [2] in which the success condition depends on pack-
ets that are injected across all initial links in the network.

Derandomization. We use the method of conditional ex-
pectations to derandomize the protocol for each M -interval.
(See e.g. [14].) In summary,

Theorem 8 Our derandomized protocol is distributed and
guarantees a delay bound of 2M = poly(m;w; 1=") for ev-
ery packet.

Proof: Let S
e0;e = fp0; p1; : : : ; p`g. For i � `, let
g(�0; �1; : : : ; �i) be equal to

X
e;t

Pr

2
4 X
p2S

e0;e

Xp;e

[t;t+T)
> (1 + "=2)�
e0;eT j�p00 = �0; : : : ; �

pi
0 = �i

3
5 ;

where t is summed over the range [
M; (
 + 1)M � T).
By a calculation similar to the Chernoff calculation of (9),

the value of g(�; : : : ; �) is upper bounded by the following
function h,

h(�0; �1; : : : ; �i)

=
X
e;t

Q
p exp(

"
2E[Xp;e

[t;t+T)j�p00 = �0; : : : ; �
pi
0 = �i])

(1 + "=2)(1+"=2)�

e0;e

T
:

For fixed �0; : : : ; �i�1, the definition of conditional
expectation implies that there exists an initial deadline
�i for the packet pi such that h(�0; �1; : : : ; �i�1) �
h(�0; �1; : : : ; �i�1; �i). If we always choose the initial dead-
line so that this inequality is satisfied then,

g(�0; �1; : : : ; �`) � h(�0; �1; : : : ; �`))

� h(;)
� exp(�"2�
e0;eT=12);

The third inequality follows from (10). We have chosen the
parametersM andT so that exp(�"2�
e0;eT=12) is less than
1. In addition, since g(�0; �1; : : : ; �`) involves no random-
ness every term of g is either 0 or 1. The above inequali-
ties imply that g(�0; �1; : : : ; �`) is less than 1 and so condi-
tion (8) fails with probability zero. Hence, with probability
one all deadlines are met and all packets reach their destina-
tions in time 2M .

It remains to show that we can calculate h(�0; : : : ; �i). If
j � i then,

E[X
pj ;e

[t;t+T)j�p00 = �0; : : : ; �
pi
0 = �i]

is equal to 0 or 1 depending on whether or not the initial
deadline �j causes packet pj to have a deadline for link e
during [t; t+ T). If j > i then,

E[X
pj;e
[t;t+T)j�p00 = �0; : : : ; �

pi
0 = �i] = E[X

pj;e
[t;t+T)];

which is equal to the probability, over all possible choices of
the initial deadline, that packet pj has a deadline for link e
during the interval [t; t+T). (Recall that the initial deadline
has at mostM choices and all subsequent deadlines are cho-
sen deterministically.) This probability is solely dependent
on whether or not the path for packet pj passes through link
e. Hence, for fixed �0; : : : ; �i�1 we can choose the value of
�i that minimizes h(�0; �1; : : : ; �i�1; �i).

4 Instability in Combined Routing and
Scheduling

In [2] it was shown that if the packet routes are given
by the adversary then the FIFO and Nearest-to-Go (NTG)
scheduling protocols can be unstable even if the packet paths
are admissible. (FIFO always gives priority to the packet

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

w1

w0 v0

v1

f 01f1

u01u1u0 u00

f0 f 00

e1

e0

Figure 3. Network G for which FIFO and NTG
are unstable even if we are allowed to choose
routes.

that arrived at the link earliest. NTG always gives priority
to the packet that has the smallest number of hops remain-
ing to its destination.) However, the examples given in [2]
do not lead to instability if we are allowed to route packets
on paths other than the ones chosen by the adversary.

We therefore have a natural question. If we are allowed to
choose the routes, can we guarantee that FIFO and NTG are
stable? In this section we show that the answer to this ques-
tion is negative. We present examples in which regardless
of how we choose the routes, the FIFO and NTG schedul-
ing protocols create instability.

Theorem 9 There exists a network G such that FIFO cre-
ates instability under some (w; r)-admissible injections re-
gardless of how packets are routed.

Proof: Network G is shown in Figure 3. We break the
packet injections into phases. We inductively assume that
at the beginning of phase j a set S of s packets with destina-
tion u0 is in the queue of e0. We show that at the beginning
of phase j + 1 more than s packets with destination u1 are
in the queue of e1. By symmetry this process repeats indefi-
nitely and the number of packets in the network grows with-
out bound. For the basis of the induction, we inject a large
burst of packets at source node v0 with destination node u0,
which is allowed by a large windoww. From now on all the
injections are at rate r with burst size one. In general the se-
quence of injections in phase j is as follows.

(1) For the first s steps, we inject a set X of rs packets at
node v0 with destination u1. These packets are com-
pletely held up at e0 by the packets in S. We also hold
up packets in S at f0 by injecting rs packets atw0 with
destinationu0. These newly injected packets get mixed

with those of S into the set S0. At the end of the first s
steps, rs packets from S0 are at f0. Note that packets
in X will be routed through either f0 or f 00.

(2) For the next rs steps, we inject a set Y of r2s packets
at node v0 with destination u1. These packets are held
up at e0 by the packets in X. We also inject packets at
w0 with destination u00 at rate r. These packets delay
the packets from X that are routed through f 00. Hence,
at most rs=(r + 1) packets of X cross f 00. (This only
happens if packets inX are routed through f 00, which is
not necessarily the case.) Note that no packet from X
crosses f0 in these steps, since the packets in S0 have
priority. Hence, at the end of these rs steps, a set X 0 �
X of at least r2s=(r + 1) packets are still at w0.

(3) For the next jX 0j+ jY j steps the packets in X 0 and Y
move forward, and merge at v1. Meanwhile, we inject
packets at v1 with destinationu1 at rate r. We end with
at least r(jX 0j+ jY j) packets at v1 with destinationu1.
This number is at least r3s+ r3s=(r + 1).

This ends phase j. For r � 0:9 we have r3 + r3=(r+ 1) >
1. It is easy to verify that the injections during phase j are
admissible. The inductive step is complete.

Injections similar to the above can be used to prove the
instability of NTG on network G at any rate r > 1=

p
2.

The induction hypothesis of phase j now does not require
the packets inS to be initially in the queue of e0, but to cross
e0 in the first s steps of the phase. Hence, subphase (3) is no
longer required. Furthermore, after subphase (2) both sets Y
and X 0 contain at least r2s packets, since single-link injec-
tions have higher priority than the packets in X. It follows
that the system is unstable since 2r2s > s.

5 Stability of a Ring with Parallel Links

In this section we consider source routing on a ring with
c parallel links. Consider a decomposition of the network
into c disjoint single rings. In the full version of the paper
we propose a deterministic on-line source-routing algorithm
that routes each packet along one of these rings and guaran-
tees that the routing is admissible. We omit the details here.
In [2] it was shown that the single ring is stable under any
greedy scheduling policy (i.e. one that always schedules a
packet whenever packets are waiting). Hence, we conclude
that the ring with c parallel links is stable under any greedy
scheduling policy if our source-routing algorithm is used.

Note that the 4-ring with 2 parallel links was shown to
be unstable under a greedy protocol such as FIFO when the
packet paths are given by the adversary [2]. This shows that
freedom of routing can make a difference in network stabil-
ity since we have a network that is unstable under FIFO if

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

the adversary can dictate the routes but is stable under FIFO
if we can choose the routes intelligently.

6 Conclusions

In this paper we have presented source routing algo-
rithms for packet-switched networks and we have described
the first distributed, deterministic scheduling protocol with
a polynomial delay bound. There is much still to be ex-
plored in the study of combined routing and scheduling.
For example, different packets are often associated with dif-
ferent delay requirements. Some of them may be delay-
sensitive whereas others may be delay-tolerant. The prob-
lem of scheduling these packets on given routes in order to
meet these delay requirements has been studied before. The
ability to choose the routes would add an additional dimen-
sion to the problem and may even make scheduling easier.

Acknowledgment

The authors wish to thank Adam Meyerson for helpful
discussions.

References

[1] W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosen.
Adaptive packet routing for bursty adversarial traffic. In Pro-
ceedings of the 30th Annual ACM Symposium on Theory of
Computing, pages 359 – 368, Dallas, TX, May 1998.

[2] M. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg,
T. Leighton, and Z. Liu. Universal stability results and per-
formance bounds for greedy contention-resolution protocols.
Journal of the ACM, 48(1):39–69, Jan. 2001.

[3] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput competi-
tive on-line routing. In Proceedingsof the 34th Annual Sym-
posium on Foundations of Computer Science, pages 32–40,
1993.

[4] B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts. Compet-
itive routing of virtual circuits with unknown duration. In
Proceedings of the 5th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 321–330, 1994.

[5] B. Awerbuch and T. Leighton. Improved approximation
algorithms for the multicommodity flow problem and local
competitive routing in dynamic networks. In Proceedings of
the 26th Annual ACM Symposium on Theory of Computing,
pages 487–496, 1994.

[6] D. Bertsimas and D. Gamarnik. Asymptotically optimal al-
gorithm for job shop scheduling and packet routing. Journal
of Algorithms, 33(2):296–318, 1999.

[7] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P.
Williamson. Adversarial queueing theory. Journal of the
ACM, 48(1):13–38, Jan. 2001.

[8] D. Gamarnik. Stability of adversarial queues via fluid mod-
els. In Proceedings of the 39th Annual Symposium on Foun-
dations of Computer Science, pages 60–70, Palo Alto, CA,
November 1998.

[9] D. Gamarnik. Stability of adaptive and non-adaptive packet
routing problems in adversarial queueing networks. In Pro-
ceedings of the 31th Annual ACM Symposium on Theory of
Computing, pages 206–214, Atlanta, GA, May 1999.

[10] N. Garg and J. Könemann. Faster and simpler algorithms for
multicommodity flow and other fractional packing problems.
In Proceedings of the 39th Annual Symposium on Founda-
tions of Computer Science, pages 300–309, Palo Alto, CA,
November 1998.

[11] S. Keshav. An engineering approach to computer network-
ing. Addison Wesley, Reading, MA, 1997.

[12] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing
and job-shop scheduling in O(congestion + dilation) steps.
Combinatorica, 14(2):167 – 186, 1994.

[13] S. Plotkin, D. Shmoys, and E. Tardos. Fast approxima-
tion algorithms for fractional packing and covering prob-
lems. Math of Oper. Research, pages 257–301, 1994.

[14] P. Raghavan. Probabilistic construction of deterministic al-
gorithms: approximating packing integer programs. Journal
of Computer and System Sciences, 37:130 – 143, 1988.

[15] E. Rosen, A. Viswanathan, and R. Callon. Multipro-
tocol label switching architecture. RFC 3031, 2001.
http://www.ietf.org/rfc/rfc3031.txt.

[16] A. Srinivasan and C. Teo. A constant-factor approximation
algorithm for packet routing, and balancing local vs. global
criteria. In Proceedingsof the 29th Annual ACM Symposium
on Theory of Computing, pages 636 – 643, El Paso, TX, May
1997.

[17] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and
G. Minden. A survey of active network research. IEEE Com-
munications Magazine, pages 80–86, January 1997.

[18] N. Young. Randomized rounding without solving the linear
program. ACM-SIAM Symposium on Discrete Algorithms,
pages 170–78, 1995.

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

