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Abstract. In this paper we present a framework to formally describe
and study the interconnection of distributed shared memory systems. In
our models we minimize the dependencies between the original systems
and the interconnection system (that is, they are decoupled) and consider
systems implemented with invalidation and propagation.
We first show that only fast (i.e. wait-free) memory models can be inter-
connected. We then show that causal and pRAM systems can be inter-
connected if they fulfill some restrictions, and for these cases, we present
protocols to interconnect them. Finally, we present a protocol to inter-
connect cache systems.

Keywords: Distributed shared memory, memory models, interconnection
systems, distributed algorithms, impossibility result, correctness proofs.

1 Introduction

Distributed shared memory is an abstraction used for process communication. In
this abstraction, processes read and write variables of a shared memory, which is
usually implemented with distributed memory and message passing. Depending
on the semantics of the shared memory a number of consistency models have
been proposed in the literature [2, 13]. Some of the most popular models are
the sequential [20], causal [5], pRAM [23], and cache [16]. Several protocols have
been proposed to implement distributed shared memory systems that implement
these consistency models.

In this work we study the interconnection of distributed shared memory
systems. By this we mean the adding of an interconnection system to several
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existing distributed shared memory systems that implement a given consistency
model to obtain a single distributed shared memory system that implements
the same consistency model. This line of work was started in [14], where the
interconnection of causal propagation-based systems was studied. In this work
we use much weaker assumptions on the systems to be interconnected, consider
also invalidation-based systems, and explore other models as well.

Our Contributions In this work we first define a framework for the interconnec-
tion of systems. We formalize several classes of interactions, both for propagation
and invalidation-based protocols, between the existing systems and the intercon-
nection system. All these classes decouple the systems from the interconnection
system, unlike the previous model [14].

Then, we show that systems that implement non-fast consistency models
cannot be interconnected in these classes. A fast consistency model is one that
allows implementations of read and write operations that return control after
only local computations. After that, we study the interconnection of pRAM and
causal systems. We show that they can not be interconnected in general, but can
under certain restrictions. We give sufficient conditions and the corresponding
protocols to do so. Finally, we also show that systems that implement cache
consistency can always be interconnected.

Note that this is the first work that studies the interconnection of pRAM
and cache systems, that considers both propagation and invalidation, and that
shows that certain interconnections are in fact impossible. Our protocols need
not be very useful nor efficient in practice, since all we try to do with this work
is to define the bounds of the possibilities of interconnection.

Related Work As far as we know, the interconnection of distributed shared sys-
tems has only been studied in [14]. For message passing, Rodrigues and Veris-
simo [27], Adly and Nagi [1], and Baldoni et al. [10] have studied the intercon-
nection of small causal message passing systems into larger systems. This could
be an alternative way to obtain a large distributed shared memory system from
smaller systems, since the causal message passing system can be directly used
to obtain causal memory. However, the purpose of this work is to respect the
original distributed shared memory systems to be interconnected, and hence this
technique is not valid for our study.

The rest of the paper is organized as follows. In Section 2 we introduce
our framework for the interconnection of systems. In Section 3 we show the
impossibility result for non-fast consistency models. In Section 4 we study the
interconnection of pRAM systems, in Section 5 the interconnection of causal
systems, and in Section 5 we show how to interconnect cache systems. Finally,
in Section 7 we present concluding remarks.

2 Definitions and Notation

We consider distributed shared memory systems (or systems for short) formed
by a collection of application processes that interact via a shared memory formed
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by a set of variables. All the interactions between the application processes and
the memory are done through read and write operations (memory operations)
on variables of the memory.

Each memory operation is applied on a named variable and has an associated
value. A write operation of the value v in the variable x, denoted w(x)v, stores
v in the variable x. A read operation of the value v from the variable x, denoted
r(x)v, reports to the issuing application process that the variable x holds the
value v. To simplify the analysis, we assume that a given value is written at most
once in any given variable and that the initial values of the variables are set by
using fictitious write operations.

2.1 Consistency Model of a System An execution α of a system S is the
set of read and write operations observed in some run R of system S.

Definition 1 (Process Order). Let p be a process of S and op, op′ ∈ α. Then
op precedes op′ in p’s process order, denoted op ≺p op′, if op and op′ are opera-
tions issued by p, and op is issued before op′.

Definition 2 (Execution Order). Let op, op′ ∈ α. Then op precedes op′ in
the execution order, denoted op ≺ op′, if:
1. op and op′ are operations from the same process p and op ≺p op′, or
2. op = w(x)v and op′ = r(x)v, or
3. ∃op′′ ∈ α : op ≺ op′′ ≺ op′

We denote by αp the subset of operations obtained by removing from α all
read operations issued by processes other than p. We also denote by α(x) the
subset of operations obtained by removing from α all the operations on variables
other than x.

Definition 3 (View). Let ≺o be an order on execution α, and let α′ ⊆ α. A
view β of α′ preserving ≺o is a sequence formed by all operations of α′ such that
this sequence preserves the order ≺o.

Note that if ≺o applied on α′ is not a total order, there can be several views
of α′. We use op

β→ op′ to denote that op precedes op′ in a sequence of operations
β. We will omit the name of the sequence when it is clear from the context. We
will also use β1 → β2, where β1 and β2 are sequences of operations, to denote
that all the operations in β1 precede all the operations in β2.

Definition 4 (Legal View). Let ≺o be an order on execution α, and let α′ ⊆ α.
A view β of α′ preserving ≺o is legal if ∀r(x)v ∈ α′:

a) ∃ w(x)v ∈ α′ : w(x)v
β→ r(x)v, and

b) @ w(x)u ∈ α′ : w(x)v
β→ w(x)u

β→ r(x)v.

By using this definition of legal view, we can define systems satisfying the
causal, pRAM, and cache consistency models.
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Definition 5 (Causal, pRAM, or Cache System). A system S is causal if
for every execution α and every process p there is a legal view βp of αp preserving
≺ on α. A system S is pRAM if for every execution α and every process p there
is a legal view βp of αp, preserving ≺q on αp, for all q. A system S is cache
if for every execution α and every variable x there is a legal view βx of α(x)
preserving ≺ on α(x).

2.2 System Architecture From a physical point of view, we consider dis-
tributed systems formed by a set of nodes and a network that provides com-
munication among them. The essence of this model has been taken from [9].
The application processes of the system are actually executed in the nodes of
the distributed system. We assume that the shared memory abstraction is im-
plemented by a memory consistency system (MCS ). The MCS is composed of
MCS-processes that use the local memory at the various nodes and cooperate
following a distributed algorithm, or MCS-protocol , to provide the application
processes with the impression of having a shared memory. The MCS-processes
are executed at the nodes of the distributed system and exchange information as
specified by the MCS-protocol. They use the communication network to interact
if they are in different nodes. Each MCS-process can serve several application
processes, but an application process is assigned to only one local MCS-process.
For each application process p we use mcs(p) to denote its MCS-process.

An application process sequentially issues read or write operations on the
shared variables by sending (read or write) calls to its MCS-process. After send-
ing a call, the application process blocks until it receives the corresponding re-
sponse from its MCS-process, which ends the operation. A read call contains the
variable to be read, while the response to the read call contains the value of the
variable as seen by the MCS-process. A write call contains the variable to be
written and the value to be written in it. The response to a write call is the
explicit acknowledgment of the call by the MCS-process.

We exclude from our study systems whose MCS does not satisfy the following
property.

Property 1. Consider any execution α of the system S. If w(x)u is a write op-
eration of α, and @w(x)v such that w(x)u ≺ w(x)v on α, then eventually the
response to any read call on x issued by any application process will contain the
value u.

With this property we assure that at least the “last” write operation on every
variable must be visible in every process of the system. Note that this property
is preserved by every system that we have found in the literature.

We consider MCSs implemented with propagation and invalidation. For sim-
plicity, in both cases we consider, as in [3, 5, 8, 18, 24, 26, 25], that each MCS-
process has a copy (replica) of the whole shared memory. In an MCS with in-
validation, some of the copies of a variable x can be “invalid” or outdated. If an
MCS-process’ copy of a variable x is invalid and one of its application processes
tries to read x, the MCS-process has to obtain the current value of x from some
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other MCS-process (following the MCS-protocol). When an application process
issues a write operation w(x)v, the local copy of x in its MCS-process is updated
with the current value v, and the valid copies of x in the rest of MCS-processes
are marked as invalid [22, 24, 26, 25]. In an MCS with propagation no copy is
ever invalid and holds the current value (as seen by the MCS-process). This
value is returned to an application process that issues a read operation. New
written values are propagated among MCS-processes to maintain the copies up
to date [3, 5, 8, 18].
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Fig. 1. Interconnection System.

2.3 The Interconnection System This paper deals with the interconnection
of systems. This means that, after the interconnection, the set of original systems
will behave as one single system. Using the terminology defined above, intercon-
necting systems is, in fact, interconnecting MCSs. In our model, the load of such
an interconnection will fall on an interconnection system (IS). An IS is a set
of processes (IS-processes) that execute some distributed algorithm or protocol
(IS-protocol). For simplicity in the IS design, we consider one IS-process for each
MCS to be interconnected. The IS-process of each system is at the same level
as an application process and has its own MCS-process. The IS-process uses the
MCS-process to read and write on the shared memory of the local system. In
particular, the only way a value written by an application process in some system
can be read by an application process in another system is if the IS-process of
the latter system writes it. IS-processes exchange information among them (as
specified by the IS-protocol) by using a communication network. Note that, after
the interconnection, the overall system has a global MCS formed by the MCSs
of the original systems plus the IS that interconnects them. Figure 1 presents an
example of an IS interconnecting two systems.

For system interconnections we extend the interface between the MCS and
the IS beyond read and write operations issued by IS-processes. We assume
that MCS-processes are connected with its corresponding IS-process through
a reliable FIFO channel and send messages to it with the changes on the local
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memory replicas by using these FIFO channels. We consider the following classes
of interfaces between the MCS and the IS.
(a) Weak decoupled class with propagation (WDP). The MCS-process of
the IS-process sends a message to the IS-process every time a variable copy is
updated. Each of these messages, denoted by msg(p, x, u), carries the process p
that issued the corresponding write operation, the variable x, and the new value
u.
(b) Strong decoupled class with propagation (SDP). Every MCS-process
in the system sends a message to its corresponding IS-process every time a
variable copy is updated. Each of these messages, denoted by msg(p, m, x, u),
carries the application process p that issued the corresponding write operation,
the MCS-process m that updated, the variable x, and the new value u. Trivially,
in the SDP class, the IS-process receives at least as much information as in the
WDP class. Thus, in this sense, SDP is stronger than WDP.
(c) Strong decoupled class with invalidation (SDI). Every MCS-process
in the system sends a message to its corresponding IS-process every time a
variable copy is invalidated or updated (by a write operation issued by one of its
application processes). Each of these messages, denoted by msg(p, q, x, u), carries
the process p that issued the corresponding write operation, the MCS-process
q that updated or invalidated this replica, the variable x, and the new value
u (if it is an update). For each write operation w(x)u issued by some process
p, the IS-process will receive an update message msg(p, mcs(p), x, u) from p’s
MCS-process, and an invalidation message msg(p, m, x) from each MCS-process
m that had a valid copy of x, and has invalidated it.

2.4 Model and Notation In this paper we assume an asynchronous model.
This means that there is no bound on the time instructions and message trans-
missions take. We do not assume synchronized clocks among processes. We also
assume that no system component (processes, nodes, and networks) fails.

In the rest of the paper we will use N to denote the number of systems to be
interconnected. The systems to be inteconnected will be denoted by S0, · · · , SN−1,
and the resulting interconnected system by ST . The IS-process for each system
Sk (where k ∈ {0, · · · , N−1}) is denoted by ispk. It is worth to remark that ispk

is part of the system Sk. For that reason, the MCS-process mcs(ispk) has a local
replica of each variable of the shared memory, and those replicas are updated or
invalidated (depending on the method used to maintain the coherence of these
replicas) following the MCS-protocol implemented in the MCS of Sk. We also
assume that the IS-processes are interconnected among them through reliable
FIFO communication channels which will be used to propagate write operations
from one system to the other. We consider that the set of processes of ST in-
cludes all the processes in S0, · · · , SN−1 except for isp0, · · · , ispN−1 (they are
only used to interconnect the systems S0, · · · , SN−1).

Regarding executions, we will use the next notation. αT will denote an exe-
cution of ST . Similarly, αk (where k ∈ {0, · · · , N −1}) will denote the execution
of Sk obtained in the same run. Note that αk and αT have in common all the
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operations issued by processes in Sk. We also extend the notation used with read
and write operations. We denote by wk

p(x)v the write operation w(x)v issued by
process p of system Sk. Similarly, we denote by rk

p(x)v the read operation r(x)v
issued by process p of system Sk. A write operation wl

q(x)v in αT issued by some
processes q in Sl appears in αk, k 6= l, as the write operation wk

ispk(x)v issued by
the process ispk in Sk. This is so because every write operation issued by ispk in
αk is, from the IS-protocol, just the propagation of a write operation issued by a
process of another system Sm, m 6= k. We denote by orig(op) the original write
operation propagated as operation op in αk

p by process ispk. Similarly, given a
write operation op issued in Sl, l 6= k, we denote by prop(op) the write operation
issued by ispk as a result of propagating op to Sk as defined by the IS-protocol.

We will say that a consistency model can be interconnected if there is an IS-
protocol that interconnects systems implementing this consistency model. The
IS-protocol can specify the number of systems it interconnects. (However, it
cannot restrict how applications processes are mapped to nodes.) The following
observation will be useful for impossibility results.

Observation 1 Every IS-protocol that interconnects N > 2 systems can be used
to interconnect 2 systems.

Proof. Let us consider that there is an IS-protocol that interconnects N > 2
systems through a set of N IS-processes. If we only have two systems, one of
the two IS-processes can simulate N − 2 empty systems and their IS-processes.
Then, we have an interconnected system of two systems.

3 Non-Fast Consistency Models

In this section we show that systems implementing “non-fast” consistency models
can not be interconnected in any of the classes defined in the previous section. We
say that a consistency model is fast if there is an MCS–protocol that implements
it, such that memory operations only require local computations before returning
control, even in systems with several nodes. There is a number of consistency
models (e.g., causal or pipelined RAM) that are fast, while there are stronger
memory models (e.g., the sequential or atomic) that are not. This implies that
the property of being fast classifies the set of memory models in a non trivial
way.

Theorem 1. There is no IS that guarantees the interconection of systems im-
plementing some non-fast memory model.

Proof. We show the result by contradiction. Assume that there is a non–fast
memory model M that can be interconnected. From Observation 1, we can
consider the interconnnection of two systems. Therefore, let us assume there
is an IS I that interconnects two systems implementing M . Let us first take a
distributed system with two nodes. In each node we implement a system with one
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MCS-process and at least one application process. Clearly, in these two single-
node systems every memory operation only requires local computations. Now we
use I to interconnect these two systems into a unique system implementing M .
Then, every memory operation in the resulting system still requires only local
computations, which contradicts the fact that M is not fast. This ends the proof.

As a consequence of this theorem, we can derive that a number of popular
memory models can not be interconnected. In [9] it is shown that the sequential
consistency model is not fast. Hence it cannot be interconnected and neither
can the atomic consistency model, nor its derivations, safe and regular [21].
Similarly, Attiya and Friedman [6] have shown that the processor consistency
models PCG and PCD [16, 4] are not fast and hence cannot be interconnected.
Finally, in [6] Attiya and Friedman also proved that any algorithm for the mutual
exclusion problem using fast operations must be cooperative. This implies that
any synchronization operation that guarantees mutual exclusion must be non–
fast. Therefore, any synchronized memory model that provides exclusive access
cannot be interconnected. As a result, we have that memory models such as the
eager release [15], the lazy release [19], the entry [11] or the scope [17] can not
be interconnected.

4 pRAM Consistency Model

In this section we study the interconnection of pRAM systems. We first show
that in general the interconnection is not possible. Then present IS-protocols for
the different classes defined under different restrictions.

4.1 Impossibility for Interconnecting pRAM Systems In this subsection
we show that we can not guarantee the interconection, through some IS in any
class, of every pair of pRAM systems. The proof of the following theorem is
based on the fact that, when some process p in Sk, k ∈ {0, 1}, issues several
write operations, it may update the corresponding variables in its local memory
in a different order from p′s process order.

Theorem 2. There is no IS in SDP that guarantees pRAM interconection for
every pair of pRAM systems.

Proof. Let us assume, by way of contradiction, that there is a system ST which
is the result of interconnecting two pRAM systems S0 and S1 through some
interconnection system I in the SDP class. From Definition 5, we know that for
every execution αT there is a legal view βT

p of αT
p , for all p, preserving ≺q, for

all q.
Assume that we have an execution α0 with the following sequence of write

operations issued by process p of S0: w0
p(x)s ≺p w0

p(y)l. We know, from Prop-
erty 1, that there is a time t after which any read operation on x and y issued by
any process in S1 returns s and l, respectively. We now assume that after this
time t the process p issues the write operations w0

p(x)u and w0
p(y)v. We consider
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that isp0 has received the messages msg(p, m, x, u) and msg(p, m, y, v) in this
order from each MCS-process m. Then, I can take one of the following actions:
Case 1: isp1 issues w1

isp1(x)u and w1
isp1(y)v, in this order, in S1. Now, some

process q of S1 issues the read operations r1
q(x)u ≺q r1

q(y)l. In this case, if
w0

p(x)u and w0
p(y)v were issued by process p in the order: w0

p(y)v ≺p w0
p(x)u,

then it is impossible to form a legal view βT
q preserving ≺p. Hence, we reach a

contradiction.
Case 2: isp1 issues w1

isp1(y)v and w1
isp1(x)u, in this order, in S1. Now, some

process q of S1 issues the read operations r1
q(y)v ≺q r1

q(x)s. In this case, if
w0

p(x)u and w0
p(y)v were issued by process p in the order: w0

p(x)u ≺p w0
p(y)v,

then it is impossible to form a legal view βT
q preserving ≺p. Hence, we reach a

contradiction.
Case 3: isp1 does not issue w1

isp1(y)v or w1
isp1(x)u in S1. From Property 1 this

case is not possible.

We know, by definition, that SDP is stronger than WDP. Hence, we can also
apply this impposibility result to ISs interconnecting pairs of pRAM systems
in WDP. Note also that the above proof can be easily adapted to the SDI class.
Hence, we have that there is no IS in SDI that guarantees pRAM interconection
for every pair of pRAM systems.

4.2 IS-protocols for pRAM Systems In this section we show how to inter-
connect systems implementing the pRAM [23] consistency model in SDP, WDP,
and SDI, as long as these systems satisfy certain restrictions. First, we present
an IS-protocol in SDP, for MCSs that satisfy the following property, which is
fulfilled by all pRAM MCSs we have found.

Property 2. In any computation αk of system Sk (k ∈ {0, · · · , N − 1}), for each
process p in Sk, there is an MCS-process s(p), known by ispk, such that if p issues
two write operations wk

p(x)v ≺p wk
p(y)u, then s(p) updates its local replica of x

with the value v before updating the variable y with the value u.

Each IS-process ispk, k ∈ {0, · · · , N − 1}, contains two concurrent tasks,
Propagatek

out and Propagatek
in. Propagatek

out deals with transferring write op-
erations issued in Sk to every Sl, l 6= k, while Propagatek

in deals with applying
within Sk the write operations transfered from the systems Sl, l 6= k. The two
tasks that form the pRAM IS-protocol in SDP operate as follows (see Fig. 2):

– Task Propagatek
out is activated after a message msg(p, s(p), x, v), for some

process p, is received by ispk. Then, Propagatek
out sends the pair 〈x, v〉 to

every ispl, l 6= k. From the above Property 2, the sending of the pairs
generated from the write operations issued by p follows p’s process order.
We avoid to re-propagate write operations received from other systems, by
checking that the write operation was not issued in Sk by ispk.

– Task Propagatek
in is activated whenever a pair 〈x, v〉 is received from some

process ispl, l 6= k. As a result, it performs a write operation wk
ispk(x)v, thus

propagating the value v to all the replicas of variable x within Sk.
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1 Task Propagatek
out :: upon reception

of msg(p, s(p), x, v)
2 begin
3 if p 6= ispk then
4 send 〈x, v〉 to every ispl, l 6= k
5 end

1 Task Propagatek
in :: upon reception

of 〈x, v〉 from ispl, l 6= k
2 begin
3 wk

ispk (x)v
4 end

Fig. 2. The pRAM IS-protocol in ispk in SDP.

The correctness of the IS-protocol of Fig. 2 is placed in the Appendix due to
space limitation. There, we show that the system ST , obtained by connecting N
systems S0, · · · , SN−1 using this pRAM IS-protocol in SDP, is pRAM.

We now consider an IS-protocol in WDP such that this IS only interconnects
MCSs that fulfill the following Property 3.

Property 3. In any computation αk of system Sk (k ∈ {0, · · · , N − 1}), for
each process p in Sk, if p issues two write operations wk

p(x)v ≺p wk
p(y)u, then

mcs(ispk) updates its local replica of x with the value v before updating its local
replica of y with the value u.

We can observe that this Property 3 is a particular case of Property 2 where
process s(p) is now mcs(ispk). Hence, we can use the same IS-protocol of Fig-
ure 2.

Finally, to end this section, we consider an IS-protocol in SDI such that this
IS only interconnects MCSs that fulfill the following Property 4.

Property 4. In any computation αk of system Sk (k ∈ {0, · · · , N − 1}), for each
process p in Sk, if p issues two write operations wk

p(x)v ≺p wk
p(y)u, then mcs(p)

updates its local replica of x with the value v before updating its local replica
of y with the value u.

Again, this property is a particular case of Property 2 where process s(p) is
now mcs(p). Hence, we can use the same IS-protocol of Figure 2 to interconnect
pRAM systems in SDI.

5 Causal Consistency Model

In this section we study the interconnection of causal systems. Note that the
pRAM model is strictly weaker than causal model [5, 12]. Therefore, the results
of impossibility of Section 4 are also applicable to causal systems.

In Section 4 we present an IS–protocol in SDP for interconnecting pRAM
systems satisfying Property 2. We can show that there is no IS in SDP that
interconnects every pair of causal systems satisfying Property 2. (The proof
is placed in the appendix due to space limitations.) This result can be easily
extended to WDP with Property 3 and SDI with Property 4.
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We now propose an IS–protocol in SDP for causal systems. We also show in
this subsection that the resulting system of this interconnection is causal. For
our IS, we will only consider MCSs that fulfill the following Property 5 (which
is in fact satisfied by all the causal protocols we have found).

Property 5. Consider any execution αk of the causal system Sk (where k ∈
{0, · · · , N − 1}). For each two write operations wk

p(x)v ≺ wk
q (y)u on αk, each

MCS–process of system Sk updates its local replica of x with the value v before
updating its local replica of y with the value u.

In the Figure 3 we present the causal IS-protocol we propose. This protocol
requires that the communication among IS-processes is totally ordered. There
are well-known message-passing protocols (e.g., [7, pp. 177-179]) to provide total
ordering of messages.

1 Task Propagatek
out :: upon reception

of msg(p, q, x, v), from every MCS-process q
2 begin
3 if p 6= ispk then
4 send 〈x, v〉 to every ispl, l 6= k
5 end

1 Task Propagatek
in :: upon reception

of 〈x, v〉 from ispl, l 6= k
2 begin
3 wk

ispk (x)v
4 end

Fig. 3. The causal IS-protocol in ispk in SDP.

It can be observed that the IS-protocol is composed by two task, like the IS-
protocol of Fig. 2. In fact, the Propagatek

in task is the same. However, the key
difference is found in task Propagateout. In this task a pair 〈x, v〉 is not sent to
the other systems until all the MCS replicas of x have been updated. Note that,
from Property 5, write operations are propagated to the rest of systems following
the causal order in system Sk. We need the communication among IS-processes
to be totally ordered to enforce that two write operations from different systems
and casually ordered, are applied in the rest of systems in the causal order.

Let us now show that the system ST , obtained by connecting N systems
S0, · · · , SN−1 using the causal IS–protocol of Fig. 3 in SDP, is causal.

Let p be some process in system Sk, k ∈ {0, · · · , N − 1}, and let mcs(p) be
its MCS-process. Recall that αk

p (resp. αT
p ) is the set obtained by removing from

αk (resp. αT ) all read operations except those from process p. We define βk
p as

a sequence with the same operations as αk
p that preserves the order in which

all operations of αk
p are issued by process p, and the order in which every write

operation is applied in mcs(p). Formally,

Definition 6. Let βk
p a sequence of the operations in αk

p. Let op and op′ in αk
p.

Then op → op′ in βk
p , if any of the following happens:

1. op and op′ are operations from the same process p of Sk and op ≺p op′.
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2. op = wk
q (x)u, op′ = wk

s (y)v, and in mcs(p) the local copy of x is updated with
u before updating y with v.
3. op = wk

q (x)u, op′ = rk
p(y)v, and in mcs(p) the local copy of x is updated with

u before p issues op′.

Note that, like in αk
p , every write operation of process ispk in βk

p is the
propagation of a write operation issued by a process of Sl, l 6= k. We define βT

p

as the sequence obtained by replacing in βk
p every write operation op from ispk

by the write operation orig(op).
The proofs of the following two lemmas are omitted due to space limitations.

Lemma 1. βT
p is formed by all operations of αT

p .

Lemma 2. βT
p preserves the execution order ≺ on αT .

Lemma 3. βT
p is legal.

Proof. If process p issues some read operation op = rk
p(x)u is because it has,

when this operation is invoked, in its local copy of x the value u. Then, the
latest write operation applied on x in p is op′ = wk(x)u. Hence, from the third
condition of Definition 6, op′ must be the previous nearest write operation on x
in βk

p . Therefore, from Definition 4, βk
p is legal. Note that, by definition of βT

p ,
if we replace in βk

p every write operation op from ispk by the write operation
orig(op), we obtain βT

p . Then, βT
p is legal.

Theorem 3. The system ST is causal.

Proof. From Definition 5, ST is causal if in each execution αT there is a legal view
of αT

p , for all p, that preserves the execution order ≺ on αT . From Lemma 1,
βT

p is formed by all operations of αT
p . Also, from Lemma 2, βT

p preserves the
execution order ≺ on αT . Finally, from Lemma 3, βT

p is legal. Then, βT
p is a

legal view of αT
p that preserves the execution order ≺ on αT . Hence, ST is a

causal system.

6 Cache Consistency Model

In this section we study the interconnection of cache systems. We show that,
unlike the previous models, the interconnection of cache systems is always possi-
ble, independently of how they are implemented. The interconnection only uses
read and write operations, without any other consideration about the interface
between the MCS and the IS. Hence, we can use the same IS-protocol for SDP,
SDI and WDP classes.

The IS-protocol we propose only works for the interconnection of two systems.
However, it can be repeatedly used to interconnect as many systems as desired.
Each ispk (in this case k ∈ {0, 1}) has one task for each variable of the shared
memory, presented in Figure 4.
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1 Task Propagatek(x) :: upon reception of 〈x, v〉 from isp1−k

2 begin
3 if v 6= “NoData′′ then

4 wk
ispk (x)v

5 last(x) = v

6 rk
ispk (x)u

7 if u = last(x) then
8 u = “NoData′′

9 send 〈x, u〉 to isp1−k

10 end

Fig. 4. The cache IS-protocol in ispk for variable x.

Note that each IS-process maintains a copy of the latest value propagated
from the other system in last(x) for each variable x. That copy must be initialized
with a special value (e.g., “NoData′′). Note also that initially one of the IS-
processes (for instance isp0) must send to the other a message with 〈x,NoData〉
for each variable x to start the interconnection.

The proof that this cache IS-protocol interconnects two cache systems is
placed in the Appendix due to space limitations.

7 Conclusions

In this paper we have formalized and studied the interconnection of distributed
shared memory systems. We have shown that non-fast, pRAM, and causal sys-
tems cannot be interconected in general, while cache systems can. Then, we have
given sufficient conditions to interconnect pRAM and causal systems. Figure 5
sumarizes these results.

Memory model SDP SDI WDP

Non-fast No No No

Causal Yes (Property 5) No No

pRAM Yes (Property 2) Yes (Property 4) Yes (Property 3)

Cache Yes Yes Yes

Fig. 5. Possibilities of interconnection under the different classes considered in this
work.

References

1. N. Adly and M. Nagi. Maintaining causal order in large scale distributed sys-
tems using a logical hierarchy. In Proceedings of the 12th IASTED International
Conference on Applied Informatics, 1995.



14

2. S.V. Adve. Designing Memory Consistency Models for Shared-Memory Multipro-
cessors. PhD thesis, University of Wisconsin-Madison, 1993.

3. Yehuda Afek, Geoffrey Brown, and Michael Merritt. Lazy caching. ACM Trans-
actions on Programming Languages and Systems, 15(1):182–205, January 1993.

4. M. Ahamad, R. Bazzi, R. John, P. Kohli, and G. Neiger. The power of processor
consistency. In Proceedings of the 5th ACM Symposium on Parallel Algorithms and
Architectures, pages 251–260, 1993.

5. M. Ahamad, G. Neiger, J.E. Burns, P. Kohli, and P.W. Hutto. Causal memory:
Definitions, implementation and programming. Distributed Computing, 9(1):37–49,
August 1995.

6. H. Attiya and R. Friedman. Limitations of fast consistency conditions for dis-
tributed shared memories. Information Processing Letters, 57:243–248, 1996.

7. H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. McGraw-Hill, 1998.

8. H. Attiya and J.L. Welch. Sequential consistency versus linearizability. Technical
Report 674, Department of Computer Science, The Technion, October 1991.

9. H. Attiya and J.L. Welch. Sequential consistency versus linearizability. ACM
Transactions on Computer Systems, 12(2):91–122, 1994.

10. R. Baldoni, R. Beraldi, R. Friedman, and R. van Renesse. The hierarchical daisy
architecture for causal delivery. Distributed Systems Engineering Journal, 6, 1999.

11. B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The Midway distributed shared
memory system. In COMPCON, 1993.

12. V. Cholvi. Formalizing Memory Models. PhD thesis, Department of Computer
Science, Polytechnic University of Valencia, December 1994.

13. V. Cholvi. Specification of the behavior of memory operations in distributed sys-
tems. Parallel Processing Letters, 8(4):589–598, December 1998.
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8 Appendix

8.1 Correctness Proof of the pRAM IS-protocol of Figure 2

Let p be some process in Sk, k ∈ {0, · · · , N − 1}, and βk
p be a legal view of

αk
p preserving ≺q on αk

p , for all q in Sk, as described in Definition 4. From
Definition 5, such a legal view must exist by the fact that Sk is a pRAM system.
We define βT

p as the sequence obtained by replacing in βk
p every write operation

op from ispk by the write operation orig(op).

Lemma 4. βT
p is formed by all operations of αT

p .

Proof. First of all, note that the difference between αk
p and αT

p is that, for each
operation op issued by ispk in αk

p , αT
p contains the original operation orig(op).

Since βk
p is a sequence formed by all operations of αk

p , and βT
p is obtained by re-

placing in βk
p every write operation op from ispk by the write operation orig(op),

then the set of operations in βT
p is the same as that of αT

p .

The following lemmas shows that of βT
p preserves the order in which the

operations are issued in any process of ST .

Lemma 5. Let op = wk
q (x)v and op′ = wk

q (y)u be two operations of αT issued
by the same process p of Sk. If op ≺q op′ on αk, then Propagatek

out will send to
every Sl, l 6= k, 〈x, v〉 before 〈y, u〉.

Proof. Directly since, by Property 2, ispk receives in Sk the message msg(q, s(q), x, v)
before msg(q, s(q), y, u), and then Propagatek

out sends to isp1−k the pair 〈x, v〉
before 〈y, u〉.

Lemma 6. Let op and op′ be two write operations of αT issued by the same
process q of Sl, where l 6= k. If op ≺q op′ on αl, then prop(op) → prop(op′) in
βk

p , for all p.

Proof. We know that βk
p is a legal view that preserves the q’s process order ≺q

on αk, for all q. Then, the result follows from Lemma 5, the fact that the channel
connecting isp1−k to ispk is reliable and FIFO, and the implementation of task
Propagatek

in (see Fig. 2).

Lemma 7. βT
p preserves q’s process order ≺q on αT

p , for all q.

Proof. By way of contradiction, let us assume that βT
p does not preserve the

order among operations issued by a process q of ST . Hence, there must be at
least two operations op and op′ of αT

p issued by q such that op ≺q op′ but op′

precedes op in βT
p . Let us consider two possible cases.

Case 1: q is in Sk. Since op′ precedes op in βT
p , op′ also precedes op in βk

p , by
definition of βT

p . Then, βk
p does not preserve q’s process order ≺q. However, this
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is not possible since, by definition, βk
p is a legal view preserving ≺q, for all q.

Hence, we reach a contradiction.
Case 2: q is in Sl, l 6= k. Since both operations are in βT

p , which only contains
read operations from process p of system Sk, both must be write operations.
Let op and op′ be propagated as operations prop(op) and prop(op′), respectively,
issued by process ispk. From Lemma 6, we have that prop(op)→prop(op′) in βk

p .
Observe now that, by definition, operation prop(op) in βk

p is replaced by op and
operation prop(op′) is replaced by op′ to obtain βT

p . Then op precedes op′ in βT
p ,

and we reach a contradiction.

Lemma 8. βT
p is legal.

Proof. By definition, βk
p is legal. Also by definition, βT

p is obtained by replacing in
βk

p every write operation op from ispk by the write operation orig(op). Therefore,
βT

p is legal.

Theorem 4. The system ST is pRAM.

Proof. From Definition 5, ST is pRAM if in each execution αT there is a legal
view of αT

p , for all p, that preserves q’s process order ≺q, for all q. From Lemma 4,
βT

p is formed by all operations of αT
p . Also, from Lemma 7, βT

p preserves the
process order ≺q, for all q. Finally, from Lemma 8, βT

p is legal. Then, βT
p is a

legal view of αT
p that preserves q’s process order ≺q, for all q. Hence, ST is a

pRAM system.

8.2 Impossibility of causal interconnection in SDP with Property 2

Theorem 5. There is no IS-protocol in SDP that guarantees causal intercon-
nection for every pair of causal systems even if Property 2 holds.

Proof. Let us assume, by way of contradiction, that there is a system ST which is
the result of interconnecting two causal systems S0 and S1 that satisfy Property 2
in SDP with the IS I. From Definition 5, we know that for every execution αT

there is a legal view βT
p of αT

p , for all p, preserving ≺.
Assume that we have an execution α0 with the following write operations

issued by process r of S0: w0
r(x)s ≺ w0

r(y)l. We know, from Property 1, that
there is a time such that any read operation on x and y issued by any process in
S1 returns s and l, respectively. We now assume that after this time the processes
p and t issue the write operations w0

p(x)u and w0
t (y)v, causally related between

them through read operations (detailed below in each case). We consider that
isp0 has received the messages msg(p, m, x, u) and msg(t, m, y, v) in this order
from each MCS-process m. Then, I can take one of the following actions:
Case 1: isp1 issues w1

isp1(x)u and w1
isp1(y)v, in this order, in S1. Now, some

process q of S1 issues the following read operations r1
q(x)u ≺q r1

q(y)l. In this
case, if r0

t (y)l ≺ w0
t (y)v ≺ r0

p(y)v ≺ w0
p(x)u, then it is impossible to form a legal

view βT
q preserving ≺. Hence, we reach a contradiction.



18

Case 2: isp1 issues w1
isp1(y)v and w1

isp1(x)u, in this order, in S1. Now, some
process q of S1 issues the following read operations r1

q(y)v ≺q r1
q(x)s. In this

case, if r0
p(x)s ≺ w0

p(x)u ≺ r0
t (x)u ≺ w0

t (y)v, then it is impossible to form a legal
view βT

q preserving ≺. Hence, we reach a contradiction.
Case 3: isp1 does not issue w1

isp1(y)v or w1
isp1(x)u in S1. From Property 1 this

case is not possible.

8.3 Auxiliary Lemmas for the Correctness Proof of the Causal
IS-protocol of Figure 3

Definition 7 (Non-Transitive Execution Order). Let op and op′ be two
operations in a execution α. Then op precedes op′ in the non-transitive execution
order (op ≺nt op′) on α if some of the following holds:
1. op and op′ are operations from the same process p and op ≺p op′ on α.
2. op = w(x)v and op′ = r(x)v.

Definition 8 (≺–Related Sequence). Let op and op′ be two operations in a
execution α such that op ≺ op′ on α. A ≺–related sequence between op and op′

is a sequence of operations op1, op2, . . . , opm belonging to α such that op1 = op,
opm = op′, and opi ≺nt opi+1 on α, for 1 ≤ i < m.

Note that at least one ≺–related sequence always exists between op and op′ if
op ≺ op′ on α.

When considering the composed system ST , a ≺–related sequence Seq be-
tween operations op and op′ of execution αT can be divided in n subsequences
subSeq1, subSeq2, . . . , subSeqn, such that all the operations in subsequence
subSeqi belong to the same system Sk and the operations in consecutive sub-
sequences belong to different systems. We use subSeqk

i to express that all the
operations of the ith subsequence belong to system Sk.

We use first(subSeqk
i ) and last(subSeqk

i ) to denote the first and last opera-
tion of the subsequence subSeqk

i , respectively. Note that, in two consecutive sub-
sequences subSeqk

i and subSeq1−k
i+1 of a given sequence, last(subSeqk

i ) = wk
j (x)v

and first(subSeq1−k
i+1 ) = r1−k

l (x)v, i.e. the first operation of the later subse-
quence reads the value written by the last operation of the former subsequence.

Lemma 9. Let op and op′ be two operations in αT
p issued in system Sk such

that op ≺ op′ in αT . If there is a ≺–related sequence between op and op′ with
one single subsequence subSeqk

1 , then op → op′ in βk
p .

Proof. Let us assume, by way of contradiction, that the claim does not hold.
Then, op ≺ op′ on αk, and op′ → op in βk

p . This is only possible if there are
at least two “consecutive” operations opi and opi+n in subSeqk

1 and belonging
to αk

t such that opi+n → opi in βk
p . We say opi+n and opi are two consecutive

operations in subSeqk
1 if they are in αk

t , t 6= p, and between them there is not
any other operation belonging to αk

p (i.e., every operation opi+l, 1 ≤ l < n, is a
read operation issued by a process other than p). Note that if n > 1 then these
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two consecutive operations opi and opi+n only can be write operations. We have
three cases:

Case 1: opi = wk(x)v and opi+n = wk(y)u. From definition of ≺–related se-
quence, opi ≺ opi+n on αk. From Property 5, if opi ≺ opi+n on αk, then opi must
be applied in all processes of Sk (and, of course, in p) before opi+n. Therefore,
from the second condition of Definition 6, opi → opi+n in βk

p , and we reach a
contradiction.

Case 2: opi = wk(x)v and opi+1 = rk
p(x)v. From definition of ≺–related se-

quence, opi ≺nt opi+1 on αk. Obviously, the write operation wk(x)v must be
applied before issuing rk

p(x)v, since, otherwise, opi+1 could not obtain the value
v in x. Therefore, from the third condition of Definition 6, opi → opi+1 in βk

p ,
and we reach a contradiction.

Case 3: opi and opi+1 are issued by the same process p. From definition of
≺–related sequence, opi ≺nt opi+1 on αk, and, from case 1 of ≺nt, opi ≺p opi+1.
Then, from the first condition of Definition 6, opi → opi+1 in βk

p , and we reach
a contradiction.

Lemma 10. Let op and op′ be two operations in αT
p .

1. If they are issued by system Sk and op ≺ op′ on αT , then op → op′ in βk
p .

2. If they are issued by system Sk and op = wk(x)v and op′ = wk(y)u and
op ≺ op′ on αT , then
Propagatek

out will send the pairs 〈x, v〉 and 〈y, u〉 to S1−k in this order.
3. If they are issued by system Sl, l 6= k, and are write operations and op ≺ op′

on αT , then
prop(op) → prop(op′) in βk

p .
4. If they are issued respectively by systems S1−k and Sk and that op = w1−k(x)v ≺

op′ on αT , then
prop(op) → op′ in βk

p .
5. If they are issued respectively by systems Sk and S1−k, and op ≺ op′ =

w1−k(x)v on αT , then
op → prop(op′) in βk

p .
6. If they are issued respectively by systems Sl and Sm (where l 6= m, l 6= k,

and m 6= k) and are write operations and op ≺ op′ on αT , then prop(op) →
prop(op′) in βk

p .

Proof. Proof of Part 1: Let Seq be a ≺–related sequence between op and op′. We
use induction on the number of subsequences of Seq to show the result. Note
that this number has to be odd. In the base case, the sequence Seq has only
one subsequence subSeqk

1 . Hence, from Lemma 9, op = first(subSeqk
1 ) →

op′ = last(subSeqk
1 ) in βk

p . Assume the claim is true for sequences with i sub-
sequences. We show it also holds if Seq has i+2 subsequences. By induction
hypothesis, we have that op = first(subSeqk

1 ) → last(subSeqk
i ) in βk

p . Note
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that last(subSeqk
i ) = wk

t (x)v is propagated to every system Sl, l 6= k, by
process ispk after, in all processes of Sk, the local copy of x is updated with
the value v. Later on, ispl propagates the pair (y, u) from last(subSeql

i+1) =
wl

q(y)u as wk
ispk(y)u (see Fig. 3). Then, wk

t (x)v is applied by all processes in
Sk (and, of course, by p) before wk

ispk(y)u, and therefore, from the second
condition of βk

p in Definition 6, wk
t (x)v → wk

ispk(y)u in βk
p . From the sec-

ond condition of ≺–related order, wk
isp(y)u ≺nt first(subSeqk

i+2) = rk
s (y)u

on αk, and then, wk
isp(y)u ≺ op′ = last(subSeqk

i+2) on αk. Then, from
Lemma 9, wk

ispk(y)u → op′ = last(subSeqk
i+2) in βk

p . Hence, by transitiv-
ity, op = first(subSeqk

1 ) → op′ = last(subSeqk
i+2) in βk

p .
Proof of Part 2: If there is a ≺–related sequence between op and op′ with a

single subsequence, then op ≺ op′ on αk, and it follows from Property 5
that op is applied in all processes of Sk before op′. Otherwise, the proof of
Part 1 shows the same fact when the ≺–related sequences between op and op′

have more than one subsequence. Then, since the task Propagatek
out of our

IS–protocol (see Fig.3) propagates operations in the order they are locally
applied, it will send to S1−k the pair 〈x, v〉 of op before the pair 〈y, u〉 of op′.

Proof of Part 3: From Part 1, op→op′ in βl
q, l 6= k. Then, the result follows

from Part 2, the fact that the channel connecting ispl to ispk is reliable and
FIFO, and the implementation of task Propagatek

in (see Fig. 3). The process
ispk issues prop(op) and prop(op′) in Sk and then, from the first condition
of execution order, prop(op) ≺ prop(op′) on αk. Hence, from Lemma 9,
prop(op) → prop(op′) in βk

p .
Proof of Part 4: Let Seq be a ≺–related sequence with n subsequences between

op and op′. Let us assume last(subSeql
n−1) = wl

q(y)u and first(subSeqk
n) =

rk
s (y)u. From Part 3, prop(op) → prop(last(subSeql

n−1)) = prop(wl
q(y)u) =

wk
ispk(y)u in βk

p . From second condition of ≺–related order, wk
isp(y)u ≺nt

first(subSeqk
n) = rk

s (y)u on αk, and then, wk
isp(y)u ≺ op′ = last(subSeqk

n)
on αk. We know, from Property 5 and Definition 6 of βk

p , that wk
ispk(y)u →

op′ = last(subSeqk
n) in βk

p . Hence, by transitivity, op = prop(op) → op′ =
last(subSeqk

n) in βk
p .

Proof of Part 5: Similar to the proof of Part 4.
Proof of Part 6: Let Seq be a ≺–related sequence with n subsequences between

op and op′. Let us assume last(subSeql
n−1) = wl

q(y)u, first(subSeqm
n ) =

rm
s (y)u and op′ = last(subSeqm

n ) = wm
t (x)v. From Part 3, prop(op) →

prop(last(subSeql
n−1)) = prop(wl

q(y)u) = wk
ispk(y)u in βk

p . Note that last(subSeql
n−1) =

wl
q(y)u is propagated, through a reliable totally ordered FIFO network, to

every system different from Sl (hence, included Sm and Sk) by process ispl

after, in all processes of Sl, the local copy of x is updated with the value
v. Later on, ispm issues wm

ispm(y)u. By definition of ≺, and from defini-
tion of ≺–related sequence, we know that wm

ispm(y)u ≺ first(subSeqm
n ) =

rm
s (y)u ≺ op′. Then, ispm issues prop(last(subSeql

n−1)) = wm
ispm(y)u before

op′ = wm
t (x)v in Sm. Hence, the process ispk (as the network connecting ispl,
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ispm, and ispk is reliable, totally ordered, FIFO, and seeing the implementa-
tion of task Propagatek

in of Fig. 3) issues prop(last(subSeql
n−1)) = wk

ispk(y)u
before prop(op′) = prop(last(subSeqm

n )) = wk
ispk(x)v in Sk. Therefore, from

Property 5 and Definition 6 of βk
p , prop(last(subSeql

n−1)) = wk
ispk(y)u →

prop(op′) = prop(last(subSeqm
n )) = wk

ispk(x)v in βk
p . Thus, by transitivity,

prop(op) → prop(op′) in βk
p .

Lemma 2 βT
p preserves the execution order ≺ on αT .

Proof. We show in this proof that if there are two operations op and op′ in αT
p

such that op ≺ op′ on αT , then op → op′ in βT
p .

Let us make a case analysis:

1. Case op and op′ are issued by processes in Sk: From Part 1 of Lemma 10 (see
the Appendix), if op ≺ op′ on αT , then op → op′ in βk

p . Then, by definition
of βT

p , we have that op → op′ in βT
p .

2. Case op and op′ are issued by processes in Sl, where l 6= k: Since both
operations are in αT

p , which only contains read operations from process p of
system Sk, both operations must be write operations. Then, let op and op′

be propagated as operations prop(op) and prop(op′).
From Part 3 of Lemma 10, we have that if op ≺ op′ on αT , then prop(op) →
prop(op′) in βk

p . Hence, replacing prop(op) and prop(op′) by op and op′,
respectively, we have that, by definition of βT

p , op → op′ in βT
p .

3. Case op is issued by some process in Sl and op′ is issued by some process in
Sk, where l 6= k: op must be a write operation, since αT

p only contains read
operations from process p of system Sk. Such operation will be propagated
from Sl to Sk as described by the IS–protocol and it will appear in Sk as a
(write) operation prop(op) issued by process ispk.
From Part 4 of Lemma 10, if op ≺ op′ on αT , then prop(op) → op′ in βk

p .
Hence, replacing prop(op) by op, we have that, by definition of βT

p , op → op′

in βT
p .

4. Case op is issued by some process in Sk and op′ is issued by some process in
Sl, where l 6= k: op′ must be a write operation, since αT

p only contains read
operations from process p of system Sk. Such operation will be propagated
from Sl to Sk as described by the IS–protocol and it will appear in Sk as a
(write) operation prop(op′) issued by process ispk.
From Part 5 of Lemma 10, if op ≺ op′ on αT , then op → prop(op′) in βk

p .
Hence, replacing prop(op′) by op′, we have that, by definition of βT

p , op → op′

in βT
p .

5. Case op is issued by some process in Sl, where l 6= k, and op′ is issued by
some process in Sm, where m 6= k and m 6= l: Since both operations are in
αT

p , which only contains read operations from process p of system Sk, both
operations must be write operations. Then, let op and op′ be propagated as
operations prop(op) and prop(op′).
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From Part 6 of Lemma 10, we have that if op ≺ op′ on αT , then prop(op) →
prop(op′) in βk

p . Hence, replacing prop(op) and prop(op′) by op and op′,
respectively, we have that, by definition of βT

p , op → op′ in βT
p .

8.4 Correctness Proof of the Cache IS-protocol of Figure 4

We now show that the system ST , obtained by connecting two systems S0 and
S1 using the cache IS–protocol in any class, is a cache system. This proof does
not depend on whether the MCSs use propagation or invalidation to preserve
the cache consistency of the copies of each object of the shared memory. This
is so because the work of the IS–protocol of Fig. 4 is not based in the message
reception.

Let β(x)k be a legal view of α(x)k preserving ≺ on α(x)k, as described in
Definition 4. Such a legal view must exist by the fact that Sk is a cache system.
We define opi as the ith write operation propagated by process isp from one
system to the other (independently of in which system it is issued). We use
op(x)k

i to indicate that opi is issued by some process in Sk on variable x. We use
prop1−k(op(x)k

i ) to denote the write operation issued by the task Propagate1−k
i

as a result of the propagation of op(x)k
i .

We define β(x)k
i as the subsequence of operations of β(x)k issued by processes

of Sk from op(x)k
i (or propk(op(x)1−k

i )) until op(x)k
i+1 (or propk(op(x)1−k

i+1 )) with-
out including them.

We define β(x)T
i as the sequence formed by all operations issued by processes

of ST between the ith and ith + 1 propagation of write operations on variable
x so that operations belonging to α(x)k follow the order they have in β(x)k,
and operations belonging to α(x)1−k follow the order they have in β(x)1−k. For-
mally, β(x)T

i can be obtained as follows: op(x)i ·head(x)k
i ·head(x)1−k

i · tail(x)k
i ·

tail(x)1−k
i , where head(x)k

i denotes the subsequence of β(x)k
i that includes all

read operations from the beginning of β(x)k
i until the first write operation in

β(x)k
i (not included), and tail(x)k

i is the subsequence of β(x)k
i that includes all

the operations in β(x)k
i that are not in head(x)k

i .
Finally, we define β(x)T as the sequence obtained by concatenating the se-

quences of β(x)T
i such that β(x)T

i goes before β(x)T
i+1,∀i. In what follows, we

will prove that it is a legal view of α(x)T .

Lemma 11. β(x)T is a sequence formed by all operations of α(x)T .

Proof. α(x)T is, by definition, the set of all operations in α(x)k and α(x)1−k

issued by all processes of Sk and S1−k other than ispk and isp1−k (i.e., by all
processes of ST ).

We know that β(x)k and β(x)1−k are sequences of all operations of α(x)k and
α(x)1−k, respectively, because they are legal views. Then, since β(x)T is formed
as the sequence of operations of ST obtained by concatenating the sequences of
legal views β(x)k and β(x)1−k, it is a sequence of all operations of α(x)T .

Lemma 12. β(x)T preserves the execution order ≺ on α(x)T .
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Proof. We show that if there are two operations op and op′ in α(x)T such that
op ≺ op′ on α(x)T , then op → op′ in β(x)T . We have two possible cases.

Case 1. op and op′ have been issued by processes of a same system. Let us sup-
pose that op and op′ are issued by processes of Sk. Note that, by definition, Sk

is a cache system. Then, from Definition 5, there must be a legal view β(x)k pre-
serving the execution order ≺ on α(x)k, and hence, from Definition 3, if op ≺ op′

on α(x)k then op → op′ in β(x)k. It is easy to check from the definition of β(x)T

that operations of αT and issued by processes of Sk appear in β(x)T and in
β(x)k in the same order. Hence, op → op′ in β(x)T .

Case 2. op and op′ have been issued by processes of different systems. Let us
suppose that op is issued by some process of Sk, and op′ is issued by some
process of S1−k. We know, from Case 1, that β(x)T preserves ≺ on α(x)k,
and also preserves ≺ on α(x)1−k. Then, β(x)T will preserve ≺ on α(x)T if it
also preserves ≺ between any two operations from different systems. Then, by
definition of β(x)T , it is enough to show that the second condition of Definition 2
is preserved between two operations op and op′ from different systems such that
op = wk(x)u and op = r1−k(x)u in β(x)T

i . We can see, by definition, that op
must be the ith write operation propagated from Sk to S1−k (that is, op(x)k

i ),
and op′ is a read operation in head(x)1−k

i . Then, by definition, op → op′ in
β(x)T

i , and, hence, op → op′ in β(x)T .

Lemma 13. β(x)T is legal.

Proof. Let op = r(x)u be a read operation of β(x)T . From Definition 4, β(x)T is
legal if op′ = w(x)u is the nearest previous write operation to op in β(x)T . We
know, by definition, that β(x)k is the same sequence than β(x)T but replacing
each write operation op from ispk by prop(op). We have two possible cases.

Case 1. op = rk(x)u and op′ = wk(x)u are operations in α(x)T issued by pro-
cesses of Sk. By definition, as β(x)k is a legal view of execution α(x)k preserving
≺ on α(x)k, op′ = wk(x)u is the nearest previous write operation to op = rk(x)u
in β(x)k. Then, by definition of β(x)T , op′ also is the nearest previous write
operation to op in β(x)T . Therefore, β(x)T is legal.

Case 2. op = rk(x)u and op′ = w1−k(x)u are operations in α(x)T issued re-
spectively by systems Sk and S1−k. Let op′ = w1−k(x)u be the write operation
op(x)1−k

i . Then, its corresponding write operation in Sk is propk(op(x)1−k
i ) =

wk
ispk(x)u. By definition, as β(x)k is a legal view of α(x)k preserving ≺ on α(x)k,

propk(op(x)1−k
i ) is the nearest previous write operation to op in β(x)k. Then,

by definition of β(x)T , propk(op(x)1−k
i ) is replaced by op′ = op(x)1−k

i to obtain
β(x)T , and op′ = op(x)1−k

i also is the nearest previous write operation to op in
β(x)T . Therefore, β(x)T is legal.

Theorem 6. The system ST is cache.
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Proof. From Definition 5, ST is cache if in each execution αT there is, for all
variable x, a legal view of α(x)T that preserves the execution order ≺ on α(x)T .
From Lemma 11, β(x)T is formed by all operations of α(x)T . From Lemma 12,
β(x)T preserves the execution order ≺ on α(x)T . Finally, from Lemma 13, β(x)T

is legal. Then, β(x)T is a legal view of α(x)T that preserves the execution order
≺ on α(x)T . Hence, ST is a cache system.


